
Section 5.3
Two dimensional oscillators

Section 5.4
Damped oscillations

Read Sections 5.3 and 5.4.

5.3. Two dimensional oscillators
The definition of an "isotropic" 
oscillator in 2 or 3 dimensions is

F = − k r

U = ½ k r2 = ½ k (x2 + y2 +z2)
in 3 dimensions

Figure 5.7 shows a 2d example; the 
particle (mass m) attached to the 4 
springs moves in the xy plane.
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Comments about Figure 5.7.
The particle (mass = m) attached to the 
springs moves in the xy plane.

What is the potential energy when the 
particle is displaced to { x , y }?

Assume that the equilibrium length of 
each spring is a, and the spring constant 
is k/2. Also, the size of the square is
2a × 2a .
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Figure 5.8.
Three examples of isotropic oscillations 
in 2d:
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  U = ½ k x2 + ½ k y2 

  x(t) = A cos(ωt)

  y(t) = B cos(ωt − δ)

1

i.e., kx = ky



Figure 5.9.
Two examples of anisotropic oscillations

     (a) 2x1 Lissajous fig. (b) quasi periodic 
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U = ½ kx x
2 + ½ ky y

2 

x(t) = A cos(ωxt)
y(t) = B cos(ωyt − δ)

1

i.e., kx ≠ ky



5.4. Damped oscillations

Sometimes in everyday life, oscillations 
may create  problems.

For example, that's why a car has shock 
absorbers −− to damp out the 
oscillations when the wheels hit a bump 
in the road, or a pothole.

Go back to 1-dimensional oscillations, 
but now add damping.

Generic picture
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The equation of motion is

m a =  − b v −  k x

Note the assumption of "linear damping"; 
i.e., Fdamping  =  −b v ;

or, we can write it this way,

m x +  b x + k x = 0 .

It is useful to "rescale the parameters" to 
write the equation in a standard form ; 

x + 2β x + ω0
2 x = 0 

where

2β = b/m     and     ω0
2 = k/m .

         ''       '

     ''        '
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         ''         'x + 2 β x + ω0
2 x = 0

Solution. This is an example of a 
"homogeneous linear differential 
equation with constant coefficients".
There is a standard method to solve this 
kind of diff. eq. (MTH 234)

6

Figure 5.10 
THE  EQUIVALENT  LRC  CIRCUIT

Recall from circuit theory

so the math is the same as for the 
mechanical system.
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⬛ Overdamped oscillator ;  β > ω0

This is the case of strong damping.
In this case p+ and p−  are real.

⬛ Underdamped oscillator ;  β < ω0

This is the case of weak damping.
In this case p1 and p2 are complex numbers.

Recall e±i θ = cos θ ± i sin θ   (Euler)
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         ''         '

±

x + 2 β x + ω0
2 x = 0

⬛ We have two solutions,
exp(p+t) and exp(p− t) where

⬛ The equation is second order, so 
the general solution depends on two 
constants. The equation is linear so we 
can write the general solution as

⬛ The 2 constants, c+ and c−  , must be determined 
from the initial conditions or some other 
information.
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⬛ The critically damped oscillator
β = ω0

In this case p+ and p−  are equal, 
p+ = p− = ω0 ; so exp(pt) is only one 
solution. To get the general solution we 
need another solution.

Exercise: Show that x(t) = t exp(pt) is 
also a solution for the critically damped 
oscillator (β = ω0).

Example. Consider these initial 
conditions: x(0) = 1 and v(0) = 0.
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Figure 5.11
Underdamped oscillator

Figure 5.12
Overdamped oscillator

Fig. 5.12 corresponds to these initial 
conditions: x(0) = 0 and v(0) > 0  ;
i.e., 1- the mass is kicked in the +x 
direction ,  2- it reaches a maximum 
displacement , and 3 - it returns to 
equilibrium monotonically.
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Critical damping  (β = ω0)
This special case has the most rapid 
return to equilibrium … 

Figure 5.13
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The "decay parameter" p versus β. 
The decay parameter is 
largest−--so the motion dies out 
most quickly−--for critical 
damping β = ω0 .
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(p− )



A mass m moves in the xy-plane, 
attached to a spring as shown.
According to a footnote in Taylor, the 
force on m is not −kr . 

OK, then, what is the force?

Homework Assignment #9

due in class Wednesday November 1

[41] Problem 4.41 and Problem 4.43

[42] SEE THE COVER SHEET
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Use the cover sheet.
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