Section 5.3
Two dimensional oscillators
Section 5.4
Damped oscillations

Read Sections 5.3 and 5.4.

Figure 5.7 (a) A restoring force that is proportional to r defines
the isotropic harmonic oscillator. (b) The mass at the center of this
arrangement of springs would experience a net force of the form
F = —kr as it moves in the plane of the four springs.

for small oscillations

5.3. Two dimensional oscillators
The definition of an "isotropic”
oscillator in 2 or 3 dimensions is
F=-Kkr

U=1kr?=%kx*+y*+z%)
in 3 dimensions

Figure 5.7 shows a 2d example; the
particle (mass m) attached to the 4
springs moves in the xy plane.
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Comments about Figure 5.7.
The particle (mass = m) attached to the
springs moves in the xy plane.

EGUILIBRIvM DisptAcED

v -‘:é—if (4-a)* ¢ 3 k(e + L elgray *ﬁ(i*_”)l
L = @-xf+ ye x oa-x b N

. . E R T P
What is the potential energy when the | P = 7
particle is displaced to { X,y }? |
Assume that the equilibrium length of Uz Lk(P+y) 4 Sy car
each spring is a, and the spring constant = dlbr™ » F = LF
1s k/2. Also, the size of the square is |
2ax2a. It is perhaps worth pointing out that one does ot get a force of the form (5.17) by simply

2

attaching a mass to a spring whose other end is anchored to the origin,



Figure 5.8.
Three examples of isotropic oscillations
in 2d: ‘
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ie., kx—ky

=3 kx?+3ky?
x(t) = A cos(wt)
y(t) = B cos(wt - 9)
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Figure 5.9. U=2k x*+3 ky y?
Two examples of anisotropic oscillations x(1) = A co s(wx‘r)
ie, k #k, y(t)=B cos(wy'r - 9)
(a) 2x1 Lissajous fig. (b) quasi periodic
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5.4. Damped oscillations

Sometimes in everyday life, oscillations
may create problems.

For example, that's why a car has shock
absorbers — to damp out the
oscillations when the wheels hit a bump
in the road, or a pothole.

Go back to 1-dimensional oscillations,
but now add damping.
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The equation of motion is

ma=-bv- kx
Note the assumption of "linear damping";
1.e., Fdamping = -bv;

or, we can write it this way,

m}'('+ b}'<+kX:0.

It is useful to "rescale the parameters” to
write the equation in a standard form ;

2 —
X+2BX+ w0, x=0
where

2p=b/m and o, *=k/m.




Figure 5.10
THE EQUIVALENT LRC CIRCUIT

Recall from circuit theory
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Figure 5.10  An LRC circuit.
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so the math is the same as for the
mechanical system.

[§+2BX+m X = O}

Solution. This is an example of a
"homogeneous linear differential
equation with constant coefficients”.
There is a standard method to solve this
kind of diff. eq. (MTH 234)

Fﬁr‘s'\“ 4?7 xit) = GPt.
Pcrt and iﬁa_’zePé‘) So
P+ 28p + wF =0

P: = — P2 VR w>
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B We have two solutions,
exp(p,t) and exp(p_t) where

P+ D \//31__ 3
m The equation is second order, so
the general solution depends on two

constants. The equation is linear so we
can write the general solution as

i
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X = c+e,P*t b e
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[ ] The 2 constants, ¢, and c_ , must be determined
from the initial conditions or some other
information.

m Overdamped oscillator; > w,
This is the case of strong damping.
In this case p, and p_ are real.

Cy = [P; Xty — ven]/ (P —Py)

m Underdamped oscillator; B <,

This is the case of weak damping.
In this case p, and p, are complex numbers.

anl Ulo) = P-l-c.;. +‘k—¢__

Recall e'? = cos 0 +1isin 0 (Euler)

X(+) = e“ﬁf[A (osc.;'t‘ + E&h«‘w’t]
lﬂj‘—e"e ‘J,} = ‘1'{ “,02.'_' FL "

Xlo) = A ad x(v) = —~pA+&E




m The critically damped oscillator

P =,

In this case p, and p_ are equal,

P, = P_= o, ; so exp(pt) is only one
solution. To get the general solution we
need another solution.

Exercise: Show that x(t) = t exp(pt) is
also a solution for the critically damped
oscillator (B = ).

X(£) = e“g{[AJ' Bt]

X() = A and x(o)= —RA+ B

Example. Consider these initial
conditions: x(0) =1 and v(0) = 0.
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Figure 5.11
Underdamped oscillator

Figure 5.12
Overdamped oscillator
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Fig. 5.12 corresponds to these initial
conditions: x(0) = 0 and v(0) > 0 ;
1.e., 1- the mass is kicked in the +x
direction, 2-it reaches a maximum
displacement, and 3 - it returns to
equilibrium monotonically.




Critical damping (B = o,) e P : t
. . . T
This special case has the most rapid e S i
return to equilibrium ... none =0 0
under B < w, B
) decay Figure 5.13 critical  f =, B
parameter over B>w, B—JB2-02 (p_)

The "decay parameter" p versus B.
The decay parameter is
largest—--so the motion dies out
most quickly—---for critical
damping B =
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A mass m moves in the xy-plane,
attached to a spring as shown.
According to a footnote in Taylor, the
force on m is not —kr .

OK, then, what is the force?
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due in class Wednesday November 1
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