Section 5.3

Two dimensional oscillators
Section 5.4
Damped oscillations
Read Sections 5.3 and 5.4.

Figure 5.7 (a) A restoring force that is proportional to \mathbf{r} defines the isotropic harmonic oscillator. (b) The mass at the center of this arrangement of springs would experience a net force of the form $\mathbf{F}=-k \mathbf{r}$ as it moves in the plane of the four springs.
for small oscillations

5.3. Two dimensional oscillators

The definition of an "isotropic" oscillator in 2 or 3 dimensions is

$$
\begin{aligned}
& \boldsymbol{F}=-\mathrm{k} \boldsymbol{r} \\
& \mathrm{U}=1 / 2 \mathrm{kr}^{2}=1 / 2 \mathrm{k}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \\
& \\
& \quad \text { in } 3 \text { dimensions }
\end{aligned}
$$

Figure 5.7 shows a 2d example; the particle (mass m) attached to the 4 springs moves in the xy plane.

(a)

Comments about Figure 5.7.

The particle (mass = m) attached to the springs moves in the xy plane.

What is the potential energy when the particle is displaced to $\{\mathrm{x}, \mathrm{y}\}$?

Assume that the equilibrium length of each spring is a, and the spring constant is $\mathrm{k} / 2$. Also, the size of the square is

$$
\begin{aligned}
& U= \frac{1}{2} \frac{k}{2}\left(l_{1}-a\right)^{2}+\frac{1}{4} k\left(l_{2}-a\right)^{2}+\frac{1}{4} k\left(l_{3}-a\right)^{2}+\frac{1}{4}\left(l_{4}-a\right)^{2} \\
& l_{1}=\sqrt{(a-x)^{2}+y^{2}} \approx a-x+\frac{y^{2}}{2 a} \\
& l_{2}=\sqrt{x^{2}+(a-y)^{2}} \frac{e+c \cdot l_{3} l_{4}}{\frac{l_{2}}{5}} \\
& \approx a-y+\frac{x^{2}}{2 a} \\
& V= \frac{1}{2} k\left(x^{2}+y^{2}\right) \quad \text { i } x^{2} y^{2} \ll a^{2} \\
&= \frac{1}{2} k r^{2} ; \therefore \vec{F}=-4 \vec{r}
\end{aligned}
$$

${ }^{5}$ It is perhaps worth pointing out that one does not get a force of the form (5.17) by simply attaching a mass to a spring whose other end is anchored to the origin.

Figure 5.8.
Three examples of isotropic oscillations in 2d:

$$
\text { i.e., } k_{x}=k_{y}
$$

$$
\begin{aligned}
& U=\frac{1}{2} k x^{2}+\frac{1}{2} k y^{2} \\
& x(t)=A \cos (\omega t) \\
& y(t)=B \cos (\omega t-\delta)
\end{aligned}
$$

(a) $\delta=0$

(b) $\delta=\pi / 2$

(c) $\delta=\pi / 4$

Figure 5.9.
Two examples of anisotropic oscillations

$$
\text { i.e., } k_{x} \neq k_{y}
$$

$$
\begin{aligned}
& U=\frac{1}{2} k_{x} x^{2}+\frac{1}{2} k_{y} y^{2} \\
& x(t)=A \cos \left(\omega_{x} \dagger\right) \\
& y(t)=B \cos \left(\omega_{y} \dagger-\delta\right)
\end{aligned}
$$

5.4. Damped oscillations

Sometimes in everyday life, oscillations may create problems.

For example, that's why a car has shock absorbers -- to damp out the oscillations when the wheels hit a bump in the road, or a pothole.
Go back to 1-dimensional oscillations, but now add damping.

Generic picture

The equation of motion is

$$
\mathrm{ma}=-\mathrm{bv}-\mathrm{kx}
$$

Note the assumption of "linear damping"; i.e., $\mathrm{F}_{\text {damping }}=-\mathrm{bv}$;
or, we can write it this way,

$$
\mathrm{m} \ddot{x}^{\prime}+\mathrm{b}{ }^{\prime} \mathrm{x}+\mathrm{kx}=0
$$

It is useful to "rescale the parameters" to write the equation in a standard form ;

$$
{ }^{\prime \prime}+2 \beta \dot{x}^{\prime}+\omega_{0}^{2} x=0
$$

where

$$
2 \beta=\mathrm{b} / \mathrm{m} \quad \text { and } \quad \omega_{0}^{2}=\mathrm{k} / \mathrm{m} .
$$

Figure 5.10

THE EQUIVALENT LR CIRCUIT
Recall from circuit theory

Figure 5.10 An LRC circuit.

$$
L \ddot{q}+R \dot{q}+\frac{1}{C} q=0 .
$$

so the math is the same as for the mechanical system.

$$
{ }^{\prime \prime}+2 \beta x^{\prime}+\omega_{0}^{2} x=0
$$

Solution. This is an example of a "homogeneous linear differential equation with constant coefficients". There is a standard method to solve this kind of diff. eq. (MTH 234)

$$
\begin{aligned}
& \text { First, try } x(t)=e^{p t} \\
& \dot{x}=p e^{p t} \text { and } \ddot{x}=p^{2} e^{p t}, \text { so } \\
& p^{2}+2 \beta p+\omega_{0}^{2}=0 \\
& p_{ \pm}=-\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}}
\end{aligned}
$$

$$
\stackrel{\prime}{\mathrm{x}}+2 \beta \mathrm{x}^{\prime}+\omega_{0}^{2} \mathrm{x}=0
$$

■ We have two solutions, $\exp \left(p_{+} t\right)$ and $\exp \left(p_{-} t\right)$ where

$$
p_{ \pm}=-\beta \pm \sqrt{\beta^{2}-\omega_{\theta}^{2}}
$$

- The equation is second order, so the general solution depends on two constants. The equation is linear so we can write the general solution as

$$
\begin{aligned}
x(t) & =c_{+} e^{p_{+} t}+c_{-} e^{p_{-} t} \\
& =e^{-\beta t}\left\{c_{+} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+c_{-} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right\}
\end{aligned}
$$

The 2 constants, c_{+}and c_{-}, must be determined from the initial conditions or some other information.

■ Overdamped oscillator; $\beta>\omega_{0}$ This is the case of strong damping. In this case p_{+}and p_{-}are real.

$$
\begin{aligned}
x(0) & =c_{+}+c_{-} \text {and } v(0)=p+c_{+}+p_{-} c_{-} \\
c_{ \pm} & =\left[p_{\mp} x(0)-v(0)\right] /\left(p_{\mp}-p_{ \pm}\right)
\end{aligned}
$$

- Underdamped oscillator; $\beta<\omega_{0}$ This is the case of weak damping. In this case p_{1} and p_{2} are complex numbers.

Recall $\mathrm{e}^{ \pm i \theta}=\cos \theta \pm \mathrm{i} \sin \theta \quad$ (Euler)

$$
\begin{aligned}
& x(t)=e^{-\beta t}\left[A \cos \omega_{1} t+B \sin \omega_{1} t\right] \\
& \text { where } \omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}} . \\
& x(0)=A \text { and } \dot{x}(0)=-\beta A+\omega_{1} B
\end{aligned}
$$

- The critically damped oscillator

$$
\beta=\omega_{0}
$$

In this case p_{+}and p_{-}are equal, $\mathrm{p}_{+}=\mathrm{p}_{-}=\omega_{0}$; so $\exp (\mathrm{pt})$ is only one solution. To get the general solution we need another solution.

Exercise: Show that $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t} \exp (\boldsymbol{p t})$ is also a solution for the critically damped oscillator ($\beta=\omega_{0}$).

$$
\begin{aligned}
& x(t)=e^{-\beta t}[A+B t] \\
& x(0)=A \text { and } \dot{x}(0)=-\beta A+B
\end{aligned}
$$

Example. Consider these initial conditions: $\quad x(0)=1$ and $v(0)=0$.

Figure 5.11

Underdamped oscillator

Figure 5.12

Overdamped oscillator

Fig. 5.12 corresponds to these initial conditions: $x(0)=0$ and $v(0)>0$; i.e., 1 - the mass is kicked in the $+x$ direction, 2-it reaches a maximum displacement , and 3 -it returns to equilibrium monotonically.

Critical damping ($\beta=\omega_{0}$)
This special case has the most rapid return to equilibrium ...

Figure 5.13 parameter

The "decay parameter" p versus β. The decay parameter is
largest---so the motion dies out most quickly---for critical
damping $\beta=\omega_{0}$.

damping	β	decay parameter
none	$\beta=0$	0
under	$\beta<\omega_{0}$	β
critical	$\beta=\omega_{0}$	β
over	$\beta>\omega_{0}$	$\beta-\sqrt{\beta^{2}-\omega_{o}^{2}}$

A mass m moves in the xy-plane, attached to a spring as shown. According to a footnote in Taylor, the force on m is not -kr .

OK, then, what is the force?

Homework Assignment \#9
due in class Wednesday November 1
[41] Problem 4.41 and Problem 4.43
[42] SEE THE COVER SHEET
[43] Problem 5.3 *
[44] Problem 5.5 *
[45] Problem 5.9^{*}
[46] Problem 5.12 **
[47] Problem 5.18 ***

Use the cover sheet.

