

A mass m moves in the xy-plane, attached to a spring as shown. According to a footnote in Taylor, the force on m is not -kr .

OK, then, what is the force?

$$
\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}})=-\mathrm{k}\left(\overrightarrow{\mathbf{r}-} l_{0} \mathbf{e}_{\mathrm{r}} \hat{)}\right.
$$

due in class Wednesday November 1
[41] Problem 4.41 and Problem 4.43
[42] SEE THE COVER SHEET
[43] Problem 5.3 *
[44] Problem 5.5 *
[45] Problem 5.9 *
[46] Problem 5.12 **
[47] Problem 5.18 ***

Need the cover sheet.

Section 5.5
 Driven damped oscillations
 Section 5.6
 Resonance
 Read Sections 5.5 and 5.6.
 UNDERSTAND THESE TOPICS:
 - particular and homogeneous solutions;
 - complex solutions for a sinusoidal driving force;
 - resonance.
 THESE CAN BE INCLUDED ON THE EXAM.

5.5. Driven damped oscillations

Generic picture

Equation

$$
\mathrm{m}^{\prime \prime} \mathrm{x}+\mathrm{b} \mathrm{x}^{\prime}+\mathrm{kx}=\mathrm{F}(\mathrm{t})
$$

The equivalent LRC circuit

$$
L \ddot{q}+R \dot{q}+\frac{1}{C} q=\mathcal{E}(t)
$$

the math is the same for the mechanical system and the electric circuit.

$$
\begin{equation*}
\mathrm{mx}+\mathrm{bx}+\mathrm{kx}=\mathrm{F}(\mathrm{t}) \tag{*}
\end{equation*}
$$

This is called an inhomogeneous linear differential equation;
the inhomogeneous term is $F(t)$.

There is a general method for solving this kind of equation (MTH 235).

The general solution of $\left(^{*}\right)$ is

$$
\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathbf{P}}(\mathrm{t})+\mathrm{X}_{\mathbf{H}}(\mathrm{t})
$$

where $\mathrm{x}_{\mathbf{p}}(\mathrm{t})$ is any 'particular' solution, and $\mathrm{X}_{\mathbf{H}}(\mathrm{t})$ is the general solution of the 'homogeneous' equation.

We already know the homogeneous equation, so the problem now is $\mathrm{X}_{\mathbf{p}}(\mathrm{t})$.

A linear differential operator

I Taylor introduces some mathematical formalism. Define this differential operator,

$$
\mathrm{D}=\mathrm{d}^{2} / \mathrm{dt}^{2}+2 \beta \mathrm{~d} / \mathrm{dt}+\omega_{0}^{2} .
$$

I "Particular solution" and "solution of the homogeneous equation"

$$
\text { The equation is } \quad \mathrm{D} \mathrm{x}=\mathrm{F} / \mathrm{m} \equiv f
$$

The particular solution is any solution,

$$
\mathrm{D} \mathrm{x} \mathrm{x}_{\mathrm{p}}=f .
$$

The homogeneous equation is $\mathrm{D} \mathrm{x}_{\mathrm{H}}=0$, and its general solution is

$$
\mathrm{x}_{\mathrm{H}}(\mathrm{t})=\mathrm{C}_{1} \exp \left(\mathrm{p}_{1} \mathrm{t}\right)+\mathrm{C}_{2} \exp \left(\mathrm{p}_{2} \mathrm{t}\right),
$$

or

$$
\mathrm{x}_{\mathbf{H}}(\mathrm{t})=\exp (-\beta t)\left[A \cos \omega_{1} t+B \sin \omega_{1} t\right] .
$$

I The most interesting case is a harmonic driving force; $\quad f(t)=f_{0} \cos \omega t$.
Use complex numbers; write

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=\operatorname{Re} \mathrm{z}(\mathrm{t}) \\
& f(\mathrm{t})=\operatorname{Re} f_{0} \mathrm{e}^{i \omega t} \\
& \mathrm{D} \mathrm{z}=f_{0} \mathrm{e}^{i \omega t}
\end{aligned}
$$

Now, we need a particular solution
of $\quad \mathrm{Dz}(\mathrm{t})=f_{o} \mathrm{e}^{i \omega t}$.
The steady-state solution is $z(t)=C e^{i \omega t}$ where $\left(-\omega^{2}+2 \beta i \omega+\omega_{0}{ }^{2}\right) C=f_{0}$.

$$
C=\frac{f_{0}}{\omega_{0}^{2}-\omega^{2}+2 i \beta \omega}
$$

So the steady state solution is

$$
x_{p}(t)=\operatorname{Re} C \exp \{i \omega t\}
$$

where

$$
C=\frac{f_{0}}{\omega_{0}^{2}-\omega^{2}+2 i \beta \omega}
$$

Amplitude and Phase Angle
Wite $C=A e^{-i \delta}$.

$$
\begin{aligned}
& A^{2}=C C^{*}=\frac{f_{0}}{\omega_{0}^{2}-\omega^{2}+2(\beta \omega} \frac{f_{0}}{\left.\omega_{0}^{2}-\omega^{2}-2 i\right) \beta \omega} \\
& A^{2}=\frac{f_{0}^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}
\end{aligned}
$$

$$
\begin{aligned}
e^{i \delta} & =\frac{A}{c}=\frac{\omega_{0}^{2}-\omega^{2}+2 i \beta \omega}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}}} \\
& =\cos \delta+i \sin \delta
\end{aligned}
$$

$$
\therefore \dot{i} \tan \delta=\frac{2 \dot{\alpha}^{\prime} \beta \omega}{\omega_{0}^{2}-\omega^{2}} \quad\left(\frac{l m}{R e}\right)
$$

Particular solution

$$
\begin{aligned}
x_{p}(t) & =\operatorname{Re} C_{e} e^{i \omega t}=\operatorname{Re} A e^{i(\omega t-\delta)} \\
& =A \cos (\omega t-\delta)
\end{aligned}
$$

when $A=\frac{\rho_{0}}{\sqrt{\left(\cos ^{2}-\omega^{\prime}\right)^{2}+4 \beta_{0} \omega^{2}}}$ ane $\tan \delta=\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}}$

$$
\begin{aligned}
& \text { Summary } \\
& \begin{array}{l}
\prime \prime \prime \\
\mathrm{mx}^{\prime}+\mathrm{bx}+\mathrm{kx}=\mathrm{F}(\mathrm{t}) \\
\prime \prime \prime \\
\mathrm{x}+2 \beta \mathrm{x}+\omega_{0}{ }^{2} \mathrm{x}=\mathrm{F}(\mathrm{t}) / \mathrm{m}=f(\mathrm{t})=f_{0} \cos \omega \mathrm{t}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The GENERAL ssuntim for } E_{q}(*) \text { with } F(t)==_{0}^{m} \cos \cos t \\
& x(t)=A \cos (\omega t-\delta)+C_{1} e^{p_{1} t}+C_{2} e^{p_{2} t}
\end{aligned}
$$

particular sol.
or
steady-state sol.
general sol. of the homogeneous eq.
"transients" (these $\rightarrow 0$ as $t \rightarrow \infty$)

Example 5.3

graphing a driven damped oscillator
FIGURE 5.15

(a)

(b)

The transients depend on the initial conditions.

Let's reproduce that figure, using Mathematica.
parameters and equations
$\ln [37]:=\{\omega, \omega 0, \beta, f 0\}=\{2 . \pi, \omega 0=10 . \pi, \beta=\pi / 2 ., f 0=1000$.
$A=f 0 / \operatorname{sqrt}[(\omega 0 \wedge 2-\omega \wedge 2) \wedge 2+(2 * \beta * \omega) \wedge 2]$
$\delta=\operatorname{ArcTan}\left[(2 * \beta * \omega) /\left(\omega 0 \wedge 2-\omega^{\wedge} 2\right)\right]$
$\omega 1=\operatorname{Sqrt}\left[\omega 0^{\wedge} 2-\beta^{\wedge} 2\right]$
$\{\mathrm{x} 0, \mathrm{v} 0\}=\{0,0\}$
$\{B 1, B 2\}=\{x 0-A * \operatorname{Cos}[\delta],(v 0-\omega * A * \operatorname{Sin}[\delta]+\beta * B 1) / \omega 1\}$

5.6. Resonance

The oxford dictionary of physics

.. 1. An oscillation of a system at its natural frequency of vibration, as determined by the physical parameters of the system. It has the characteristic that large amplitude vibrations will ultimately result from low-power driving of the system. Resonance can occur in atoms and molecules, mechanical systems, and electrical circuits (see resonant circuit ; resonant cavity). 2. A very short-lived elementary particle that can be regarded as an excited state of a more stable particle. Resonances decay by the strong interaction (see fundamental...

Here is the solution for the driven damped oscillator, with a harmonic driving force :

Amplitude A

$$
A^{2}=\frac{f_{0}^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(2 \beta \omega)^{2}}
$$

Phase Angle δ

FIGURE 5.16

Figure 5.16 The amplitude squared, A^{2}, of a driven oscillator, shown as a function of the natural frequency ω_{0}, with the driving frequency ω fixed. The response is dramatically largest when ω_{0} and ω are close.

This is for some small value of β How does the resonance depend on β ?

FIGURE 5.17 : cases with weak damping

As β decreases, the resonant peak becomes sharper.

Width and Q factor

 FIGURE 5.18 :

FWHM = Full Width at Half Maximum

Quality factor

$$
\mathrm{Q}=\frac{\omega_{0}}{2 \beta}=\frac{\text { decay time }}{\text { period }} \times \pi
$$

The Phase at Resonance

Figure 5.19 The phase shift δ increases from 0 through $\pi / 2$ to π as the driving frequency ω passes through resonance. The narrower the resonance, the more suddenly this increase occurs. The solid curve is for a relatively narrow resonance ($\beta=0.03 \omega_{0}$ or $Q=16.7$), and the dashed curve is for a wider resonance ($\beta=0.3 \omega_{0}$ or $Q=1.67$).

Taylor's comment ...

In the resonances of classical mechanics, the behavior of the phase (as in Figure 5.19) is usually less important than that of the amplitude (as in Figure 5.18). ${ }^{14}$ In atomic and nuclear collisions, the phase shift is often the quantity of primary interest. Such collisions are governed by quantum mechanics, but there is a corresponding phenomenon of resonance. A beam of neutrons, for example, can "drive" a target nucleus. When the energy of the beam equals a resonant energy of the system (in quantum mechanics energy plays the role of frequency) a resonance occurs and the phase shift increases rapidly from 0 to π.

