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A mass m moves in the xy-plane,
attached to a spring as shown.
According to a footnote in Taylor, the
force on m is not —kr .

OK, then, what is the force?

Homework Assignment #9

due in class Wednesday November 1
[41] Problem 4.41 and Problem 4.43
[42] SEE THE COVER SHEET

[43] Problem 5.3 *

[44] Problem 5.5 *

[45] Problem 5.9 *

[46] Problem 5.12 **

[47] Problem 5.18 ***

Need the cover sheet.




Section 5.5

Driven damped oscillations
Section 5.6

Resonance

Read Sections 5.5 and 5.6.

UNDERSTAND THESE TOPICS:

e particular and homogeneous
solutions;

e complex solutions for a sinusoidal
driving force;

® resonance.

THESE CAN BE INCLUDED ON THE EXAM.

5.5. Driven damped oscillations

Generic picture
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Equation

mx + bx + kx = F(t)




The equivalent LRC circuit
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the math is the same for the mechanical system
and the electric circuit.

( m;£+b}'(+kX:F(t) (™) J

This is called an inhomogeneous linear

differential equation; the
inhomogeneous term is F(t).

There is a general method for solving
this kind of equation (MTH 235).

The general solution of (*) is
X(t) = Xp(1) + x4(1)
where x,(t) is any ‘particular’ solution,

and x,(t) is the general solution of the
'homogeneous’ equation.

We already know the homogeneous
equation, so the problem now is Xy (t).




A linear differential operator

I Taylor introduces some mathematical

formalism. Define this differential operator,

D = d%dt? + 2 d/dt + o2 .

I "Particular solution" and "solution of the
homogeneous equation”

The equation is Dx =Fm=f

The particular solution is any solution,
Dx,=f

The homogeneous equation is D x, = 0,
and its general solution is

x,(0) = C, exp(p, V) + C, exp(p, 1),
or

X,() = exp(—pt) [A cos ot + Bsin o, t].

I The most interesting case is a harmonic
driving force;  f(t) = f, cos wt.

Use complex numbers; write
xX(t) = Re z(t) ,
f®=Re f,e
Dz=f e

Now, we need a particular solution

of Dz(t)=1f e"",

The steady-state solutionis z(t)=Ce’%!
where (-w®+2Biw+w,>)C=f, .
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So the steady state solution is

X,(t) =Re Cexp{imt}
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Summary

mx + bx + kx = F(t) *)

n

X+ZB}'{+®02X=F(t)/m:f(t):fOCOScot

m
The GENERAL  sthbin o By (%) wh Ftt)=f gpsest
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X(t) = Aco;{wt-—g) + C}Eh +C e

particular sol. general sol. of the homogeneous eq.
or or
steady-state sol. "transients" (these — 0ast— =)




Example 5.3
graphing a driven damped oscillator

FIGURE 5.15

driving force

}f(r)
I
1 2 3 4

(a)

x(1)

resulting motion

(b)

The transients depend on the initial conditions.

Let's reproduce that figure, using
Mathematica.

parameters and equations

{m, w0, B, fD} = [2. n, w0 =10.x, B=n/2., £0 = 1000.}

A=f0/Sqrt[(w0A2-wA2)A2+ (2%B*w)A2]

6 =ArcTan[(2*B*w) / (WOA2 -wA2)]

wl = Sgrt[wl0An2 -BA2]

{x0, v0} = {0, 0}

{B1, B2} = {x0-A*Cos[6], (VO-w*Ax8in[6] +B*B1) /wl}

nasi- £[t_] := f0xCos[w* t]
x[t_] :=AxCos[wxt-6] +
Exp[-B*t] * (Bl*Cos [wl % t] + B2 *Sin[ml*t])




Plots

£ driving force
ine9)= Plot [f [t]., {t. O, 5}]
4 Plot[x[t], {t, 0, 5}]
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5.6. Resonance

The oxford dictionary of physics

.. 1. An oscillation of a system at its natural frequency of vibration,
as determined by the physical parameters of the system. It has the
characteristic that large amplitude vibrations will ultimately result
from low-power driving of the system. Resonance can occur in
atoms and molecules, mechanical systems, and electrical circuits (
see resonant circuit ; resonant cavity ). 2. A very short-lived
elementary particle that can be regarded as an excited state of a
more stable particle. Resonances decay by the strong interaction (
see fundamental...

Here is the solution for the driven damped
oscillator, with a harmonic driving force :

Amplitude A Af = %
(2 ~w?)? + (2pw)?

23w
2 2
W2 —w

Phase Angle 5 tan g =
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Figure 5.16 The amplitude squared, A2, of a driven oscillator,
shown as a function of the natural frequency w,, with the driving
frequency w fixed. The response is dramatically largest when @,
and w are close.

This is for some small value of
How does the resonance depend on 8 ?




FIGURE 5.17 : cases with weak damping
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As f decreases, the resonant peak
becomes sharper.

Width and Q factor
FIGURE 5.18 :
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The Phase at Resonance
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Figure 519  The phase shift 8 increases from 0 through /2
to 7 as the driving frequency w passes through resonance. The
narrower the resonance, the more suddenly this increase occuts.
The solid curve is for a relatively narrow resonance (8 = 0.03w,
or Q = 16.7), and the dashed curve is for a wider resonance
(8 =030, 0r Q = 1.67).
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Taylor's comment ...

In the resonances of classical mechanics, the behavior of the phase (as in Fig-
ure 5.19) is usually less important than that of the amplitude (as in Figure 5.18).1 In
atomic and nuclear collisions, the phase shift is often the quantity of primary inter-
est. Such collisions are governed by quantum mechanics, but there is a corresponding
phenomenon of resonance. A beam of neutrons, for example, can “drive” a target
nucleus. When the energy of the beam equals a resonant energy of the system (in
quantum mechanics energy plays the role of frequency) a resonance occurs and the

phase shift increases rapidly from O to .

Homework Assignment #9

due in class Wednesday Nov 1
[41] Problem 4.41 and Problem 4.43
[42] ASSIGNED ON THE COVER SHEET
[43] Problem 5.3 *
[44] Problem 5.5 *
[45] Problem 5.9 *
[46] Problem 5.12 **

[47] Problem 5.18 *** Use the cover sheet.
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