
Section 5.7

Fourier Series

Motivation

Consider the driven damped oscillator, 
but for an arbitrary periodic driving 
force.

Recall, D x(t) = f (t)

                         
where D x = x + 2 β x + ω0

2 x 

and  f  = F/m.

"Periodic" means f ( t + τ ) = f ( t ).

Now, "periodic" does not necessarily 
mean sinusoidal.
("Sinusoidal" and "harmonic" are the 
same thing.)

A harmonic function is periodic ;

e.g., f (t) = f0 cos ωt  is periodic, with 

period τ = 2π /ω ;

proof :

f ( t + τ ) = f0 cos[ω(t+ τ)] 
= f0  cos[ωt + 2π]

= f0  cos ωt = f ( t ).

But a periodic function is not 

necessarily harmonic.
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Figure 5.20 . Two examples of periodic functions
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Motivation

To solve :

D x(t) = f (t)
                 

where D x = x + 2 β x + ω0
2 x 

and  f (t) = F(t) /m is periodic

f ( t + τ ) = f ( t ).

∎ We know the solution if f (t) is 

harmonic (from the previous lecture).

∎ Now consider  f = f1 + f2 ;

then x = x1 + x2 , because the equation is 
linear.

∎ So, if  f (t) is a superposition of 

harmonic functions, then x(t) is the 
superposition of corresponding 
solutions, which we already know.

∎ Fourier's theorem

If  f (t) is a periodic function, then it can 
be written as a superposition of 
harmonic functions,
          

  f (t) = ∑ [ an cos(nωt) + bn sin(nωt) ]

 

where ω = 2π /τ .

Easy exercise:: Prove that f (t) is periodic. 
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Figure 5.21
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Simplifications:

※ If f(t) is an even function of t,

i.e., f(−t) = f(t), then

b1 = 0 = b2 = b3 = … bn = … = 0.

※ If f(t) is an odd function of t,

i.e., f(−t) = − f(t), then

a0 = 0 = a1 = a2 = … an = … = 0.

※ Today, we'll assume f(t) is even;

⇒ a superposition of cosines .

∎ Fourier's theorem

If  f (t) is a periodic function, then it can 
be written as a superposition of 
harmonic functions.
          

  f (t) = ∑ [ an cos(nωt) + bn sin(nωt) ]

 

where ω = 2π /τ .

Proof: Take a math course.

Now,
given f (t) , what are the 
coefficients an and bn ?
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Example 5.4 :
periodic rectangular pulses

Figure 5.22
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Important: understand that this 
f(t) is an even function of t.
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Parameters:

τ

Δτ

fmax
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The Fourier coefficients for an even 
periodic function ...
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The periodic 
rectangular pulse.

Let's look at it for Δτ = 
0.25 τ .
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Fourier series truncated at n = 2                       ||                     truncated at n = 10

Comments:
(1) as N ⟶ ∞ the Fourier series approaches the function f(t);
(2) at a discontinuity, the truncated Fourier series can't reproduce the discontinuity.
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Figure 5.23 :  The Fourier series for the periodic rectangular pulse, 
truncated to (a) 3 terms , and (b) 11 terms. As N → ∞, the series approaches  f .
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Preview of Section 5.8.
Fourier Series Solution

for the Driven Oscillator

To solve, D x = f .

We'll just obtain the steady-state 
solution ; i.e., the particular 
solution that x(t) approaches as

t → ∞ .

We'll have f (t) = ∑n an cos(nωt) .

(assuming f(t) is even in t)

By the superposition principle,

x(t) = ∑n an An cos [ nω( t − δn) ] .

Homework Assignment #10
due in class Wednesday November 8 

[47] Problem 4.53
[48] Problem 5.25 **
[49] Problem 5.30 **
[50] Problem 5.37 **
[51] Problem 5.44 **
[52] Problem 5.52 *** [Computer]

Exam 2 will be Friday November 3;
❏ conservation of energy;
❏ Section 4.6; "complete solution";
❏ central forces;
❏ damped oscillations;
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An  and  δn  are derived in Section 5.6 ( and in Friday's lecture).


