Section 5.7

Fourier Series

Motivation

Consider the driven damped oscillator,
but for an arbitrary periodic driving
force.

Recall, D x(t)=f()

where DX='}£+2BX'+(DOZX
and f = F/m.

"Periodic" means f(t+1)=f(t).

Now, "periodic" does not necessarily
mean sinusoidal.

("Sinusoidal" and "harmonic" are the
same thing.)

A harmonic function is periodic;
e.g., f(t) = f, cos wt is periodic, with
period t=2n /o ;
proof:

f(t+1)=f, cos[o(t+1)]

= f, cos[ot + 2]

=f, cosot  =f(1).

But a periodic function is not
necessarily harmonic.




Figure 5.20 . Two examples of periodic functions
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Figure 5.20 Two examples of periodic functions with period 7. (a) A rectangular
pulse, which could represent a hammer hitting a nail with a constant force at
intervals of t, or a digital signal in a telephone line, (b) A smooth periodic signal,
which could be the pressure variation of a musical instrument.



Motivation

To solve :
D x(t) = f (1)

(A Y 2
where DX=X+2pX+w,°X

and f(t) = F(t) /m is periodic
flt+1)=f(t).

I We know the solution if f (t) is
harmonic (from the previous lecture).

I Now consider f=f, +f,;
then X = X, + X, , because the equation is
linear.

I So, if f(t) is a superposition of
harmonic functions, then x(t) is the
superposition of corresponding
solutions, which we already know.

I Fourier's theorem

If f(t)is a periodic function, then it can
be written as a superposition of
harmonic functions,

f®) =2 [a_ cos(not) +b_sin(not) ]
n=0

where v =2n/t.

Easy exercise:: Prove that f (t) is periodic.




Figure 5.21
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Figure 521 Any function of the form cos(2nmt /) (or the corresponding sine)
is periodic with period 7 if »n is an integer. Notice that cos(4xt/t) also has the
smaller period t/2, but this doesn’t change the fact that it has period t as well.




I Fourier's theorem

If f(t)is a periodic function, then it can

be written as a superposition of
harmonic functions.

f®) =2 [a_ cos(not) +b_sin(not) ]
n=0
where o = 2n [t .

Proof: Take a math course.

Now,
given f (t), what are the
coefficients a and bn ?

Simplifications:

o¢ If f(t) is an even function of t,

le., f(—t) = f(v), then
b,=0=b,=b,=...b =...=0.

>¢ If f(t) is an odd function of t,
le., f(-t) = - f(v), then

aO:O:alzaZ:...an:...:O.

> Today, we'll assume f{(t) is even;

— a superposition of cosines .




Example 5.4 :
periodic rectangular pulses

Important: understand that this
f(t) is an even function of t.

Figure 5.22
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Figure 5.22 A periodic rectangular pulse. The period is 1, the
duration of the pulse is A, and the pulse height is fi.«.




The Fourier coefficients for an even
periodic function ...
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The periodic mﬁ,‘_ﬂr prlse The periodic

rectangular pulse.
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Fourier series truncated at n = 2 | truncated at n = 10
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Comments:
(1) as N — oo the Fourier series approaches the function f{(t);
(2) at a discontinuity, the truncated Fourier series can't reproduce the discontinuity.




Figure 5.23 : The Fourier series for the periodic rectangular pulse,
truncated to (a) 3 terms , and (b) 11 terms. As N — oo, the series approaches f.
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Figure 5.23 (a) The sum of the first three terms of the Fourier series for the
rectangular pulse of Figure 5.22. (b) The sum of the first 11 terms.
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Preview of Section 5.8.
Fourier Series Solution
for the Driven Oscillator

Tosolve, Dx=f.

We'll just obtain the steady-state

solution; 1i.e., the particular

solution that x(t) approaches as
{— 0.

We'll have f(t) =3 a_cos(not) .
(assuming f(t) is even in t)
By the superposition principle,
x®)=% a A cos[no(t-5)].

Homework Assignment #10
due in class Wednesday November 8
[47] Problem 4.53
[48] Problem 5.25 **
[49] Problem 5.30 **
[50] Problem 5.37 **
[51] Problem 5.44 **
[52] Problem 5.52 *** [Computer]

Exam 2 will be Friday November 3;
[ conservation of energy;

d  Section 4.6; "complete solution";
A central forces;

d damped oscillations;

A and &  are derived in Section 5.6 (and in Friday's lecture).




