Section 5.7

Fourier Series

Motivation

Consider the driven damped oscillator, but for an arbitrary periodic driving force.

$$
\text { Recall, } \quad \mathrm{D} \mathrm{x}(\mathrm{t})=f(\mathrm{t})
$$

where $D \mathrm{x}=\mathrm{x}+2 \beta \mathrm{x}+\omega_{0}{ }^{2} \mathrm{x}$ and $f=\mathrm{F} / \mathrm{m}$.
"Periodic" means $f(\mathrm{t}+\tau)=f(\mathrm{t})$.

Now, "periodic" does not necessarily mean sinusoidal.
("Sinusoidal" and "harmonic" are the same thing.)

A harmonic function is periodic;
e.g., $f(\mathrm{t})=f_{0} \cos \omega \mathrm{t}$ is periodic, with period $\tau=2 \pi / \omega$;
proof :

$$
\begin{aligned}
& f(\mathrm{t}+\tau)=f_{0} \cos [\omega(\mathrm{t}+\tau)] \\
& =f_{0} \cos [\omega \mathrm{t}+2 \pi] \\
& =f_{0} \cos \omega \mathrm{t} \quad=f(\mathrm{t}) .
\end{aligned}
$$

But a periodic function is not necessarily harmonic.

Figure 5.20 . Two examples of periodic functions

(a)

(b)

Figure 5.20 Two examples of periodic functions with period τ. (a) A rectangular pulse, which could represent a hammer hitting a nail with a constant force at intervals of τ, or a digital signal in a telephone line. (b) A smooth periodic signal, which could be the pressure variation of a musical instrument.

Motivation

To solve :

$$
\mathrm{Dx}(\mathrm{t})=f(\mathrm{t})
$$

where $\quad \mathrm{Dx}=\stackrel{\mathrm{X}}{\mathrm{x}}+2 \beta \mathrm{x}+\omega_{0}^{2} \mathrm{x}$
and $f(\mathrm{t})=\mathrm{F}(\mathrm{t}) / \mathrm{m}$ is periodic

$$
f(\mathrm{t}+\tau)=f(\mathrm{t}) .
$$

I We know the solution if $f(\mathrm{t})$ is harmonic (from the previous lecture).

I Now consider $f=f_{1}+f_{2}$; then $x=x_{1}+x_{2}$, because the equation is linear.

I So, if $f(\mathrm{t})$ is a superposition of harmonic functions, then $\mathrm{x}(\mathrm{t})$ is the superposition of corresponding solutions, which we already know.

I Fourier's theorem

If $f(\mathrm{t})$ is a periodic function, then it can be written as a superposition of harmonic functions,

$$
f(\mathrm{t})=\sum_{\mathrm{n}=0}^{\infty}\left[\mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} \omega \mathrm{t})+\mathrm{b}_{\mathrm{n}} \sin (\mathrm{n} \omega \mathrm{t})\right]
$$

where $\omega=2 \pi / \tau$.
Easy exercise:: Prove that $f(t)$ is periodic.

Figure 5.21

Figure 5.21 Any function of the form $\cos (2 n \pi t / \tau)$ (or the corresponding sine) is periodic with period τ if n is an integer. Notice that $\cos (4 \pi t / \tau)$ also has the smaller period $\tau / 2$, but this doesn't change the fact that it has period τ as well.

I Fourier's theorem

If $f(\mathrm{t})$ is a periodic function, then it can be written as a superposition of harmonic functions.

$$
f(\mathrm{t})=\sum_{\mathrm{n}=0}^{\infty}\left[\mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} \omega \mathrm{t})+\mathrm{b}_{\mathrm{n}} \sin (\mathrm{n} \omega \mathrm{t})\right]
$$

where $\omega=2 \pi / \tau$.
Proof: Take a math course.

Now,

given $f(t)$, what are the coefficients a_{n} and b_{n} ?

Simplifications:

$※$ If $f(t)$ is an even function of t,
i.e., $\quad f(-t)=f(t), \quad$ then
$\mathrm{b}_{1}=0=\mathrm{b}_{2}=\mathrm{b}_{3}=\ldots \mathrm{b}_{\mathrm{n}}=\ldots=0$.
※ If $f(t)$ is an odd function of t,
i.e., $\quad f(-t)=-f(t)$, then
$a_{0}=0=a_{1}=a_{2}=\ldots a_{n}=\ldots=0$.
Today, we'll assume $f(t)$ is even;
\Rightarrow a superposition of cosines .

Example 5.4:

periodic rectangular pulses
Figure 5.22

Important: understand that this
$f(t)$ is an even function of t .

Parameters:

Figure 5.22 A periodic rectangular pulse. The period is τ, the duration of the pulse is $\Delta \tau$, and the pulse height is $f_{\max }$.

The Fourier coefficients for an even periodic function ...
$f(t)=\sum_{n=0}^{\infty} a_{n} \cos (n \omega t)$ where $\omega=\frac{2 \pi}{\varepsilon}$
Leven function of $t: f(-t)=f(t)$
Now consider

$$
\begin{aligned}
& t=\int_{-\tau / 2}^{\tau / 2} f(t) \cos (n \omega t) d t \\
& =\sum_{n^{2}=0}^{\infty} a_{n^{\prime}} \underbrace{\pi / 2}_{-=-2 / 2} \cos \left(n^{\prime} \omega t\right) \cos (n \omega t) d t \\
& G=\int_{\tau / 2}^{t / 2}\left\{\cos \left(n^{\prime}+n\right) \omega t\right. \\
& \left.+\cos \left(n^{\prime}-n\right) \omega t\right\} \frac{d t}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\left(n^{\prime}+n\right) \omega} \sin \left[\left(n^{\prime}+n\right) \omega t\right]+\left.\frac{1}{\left(n^{\prime}-n\right) \omega} \sin \left[\left(n^{\prime}-n\right) \omega t\right]\right|_{t=-\tau / 2} ^{t=\tau / 2} x \frac{1}{2} \\
& \frac{\frac{\omega}{\omega t / 2}=\pi}{\frac{\sin (-x)=-\sin (x)}{2}} \\
& =\frac{\sin \left[\left(n^{\prime}+n\right) \pi\right]}{\left(n^{\prime}+n\right) \pi}+\frac{\sin \left[\left(n^{\prime}-n\right) \pi\right]}{\left(x^{\prime}-n\right) \pi}=0 \text { if } n^{\prime} \neq n \\
& A=a_{n} \int_{-\tau / 2}^{\tau / 2} \cos ^{2}(n \omega t) d t=\left\{\begin{array}{l}
g \tau \\
\text { suse } n=0 \\
a_{n} \frac{\tau}{2} \text { ane } n=0
\end{array}=*\right.
\end{aligned}
$$

Thus $\quad a_{0}=\frac{1}{\varepsilon} \int_{-\pi / 2}^{\tau / 2} f(t) d t$

$$
a_{n}=\frac{2}{z} \int_{-z / 2}^{\varepsilon / 2} f(t) \cos (n \omega t) d t \text { for } n>0 \text {. }
$$

for any even periotic function $f(t)$.

The periodic rectangular pulse

$$
\begin{aligned}
& \omega=\frac{2 \pi}{\tau} \\
& \frac{\omega}{2}=\frac{\pi}{\tau}
\end{aligned}
$$

$$
\begin{aligned}
a_{0} & =\frac{1}{\tau} \int_{-\tau / 2}^{\tau / 2} f(t) d t=f_{\text {max }} \frac{\Delta \tau}{\tau} \\
a_{n} & =\frac{2}{\tau} \int_{-\tau / 2}^{\pi / 2} f(t) \cos (n \omega t) d t \\
& \left.=\frac{2}{\tau} f_{\text {max }} \frac{1}{n \omega} \sin (n \omega t)\right]_{t=-\Delta \tau / 2}^{t=\Delta \tau / 2} \\
& =\frac{2}{\tau} f_{\text {max }} \frac{2}{n \omega} \sin \left(n \omega \frac{\Delta \tau}{2}\right) \\
a_{n} & =f_{\text {max }} \frac{2}{n \pi} \sin \left(\frac{n \pi \Delta \tau}{\tau}\right) \\
f(t) & =\sum_{n=0}^{\infty} a_{n} \cos (n \omega t)
\end{aligned}
$$

The periodic rectangular pulse.

Let's look at it for $\Delta \tau=$ 0.25τ.

$$
\begin{aligned}
& \Delta z=0,25 \tau \Rightarrow\left\{\begin{array}{l}
a_{0}=\frac{f_{\text {max }}}{4} \\
a_{n}=f_{\text {max }} \frac{2 \sin \left(\frac{n \pi}{4}\right)}{n \pi}(n>0)
\end{array}\right. \\
& \begin{array}{ll}
n & a_{n} / f_{m a x} \\
0 & 1 / 4
\end{array}=0.2500=0.450
\end{aligned}
$$

Fourier series truncated at $\mathrm{n}=2$

truncated at $\mathrm{n}=10$

Comments:
(1) as $N \longrightarrow \infty$ the Fourier series approaches the function $f(t)$;
(2) at a discontinuity, the truncated Fourier series can't reproduce the discontinuity.

Figure 5.23: The Fourier series for the periodic rectangular pulse, truncated to (a) 3 terms, and (b) 11 terms. As $\mathrm{N} \rightarrow \infty$, the series approaches f.

(a) 3 terms

(b) 11 terms

Figure 5.23 (a) The sum of the first three terms of the Fourier series for the rectangular pulse of Figure 5.22. (b) The sum of the first 11 terms.

Preview of Section 5.8.

Fourier Series Solution for the Driven Oscillator

To solve, $\mathrm{D} x=f$.
We'll just obtain the steady-state solution; i.e., the particular solution that $\mathrm{x}(\mathrm{t})$ approaches as

$$
t \rightarrow \infty
$$

We'll have $f(\mathrm{t})=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} \omega \mathrm{t})$.
(assuming $f(t)$ is even in t)

By the superposition principle,

$$
x(t)=\sum_{n} a_{n} A_{n} \cos \left[n \omega\left(t-\delta_{n}\right)\right] .
$$

Homework Assignment \#10
due in class Wednesday November 8
[47] Problem 4.53
[48] Problem 5.25 **
[49] Problem 5.30 **
[50] Problem 5.37 **
[51] Problem 5.44 **
[52] Problem 5.52 *** [Computer]

Exam 2 will be Friday November 3;

- conservation of energy;
- Section 4.6; "complete solution";
\square central forces;
- damped oscillations;

