Section 5.8

Fourier series solution

for the driven oscillator

Section 5.9

RMS displacement

Read Sections 5.8 and 5.9.

Fourier series solution for the driven oscillator
/1/ To solve: $\mathrm{Dx}=f$ where

$$
\begin{equation*}
\mathrm{D}=\mathrm{d}^{2} / \mathrm{dt}^{2}+2 \beta \mathrm{~d} / \mathrm{dt}+\omega_{0}^{2} \tag{1}
\end{equation*}
$$

and $f(\mathrm{t})$ is a periodic driving force with angular frequency $\omega=2 \pi / \tau$.
(β = damping constant; $\omega_{0}=$ natural frequency)

We'll just determine the steady-state solution ; i.e., the particular solution that $\mathrm{x}(\mathrm{t})$ approaches as $\mathrm{t} \rightarrow \infty$.

/2/ Method:

By Fourier's theorem we can write

$$
\begin{aligned}
& f(\mathrm{t})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} \omega \mathrm{t})+\sum_{\mathrm{n}=0}^{\infty} \mathrm{b}_{\mathrm{n}} \sin (\mathrm{n} \omega \mathrm{t}) \\
& \text { (even in t) (odd in t) }
\end{aligned}
$$

To make it simple, assume $f(\mathrm{t})$ is even; then $b_{n}=0$ for all n.

/3/ Recall Section 5.6

Consider the harmonic driving force

$$
f=\mathrm{a}_{\mathrm{n}} \cos \left(\omega_{\mathrm{n}} \mathrm{t}\right) \quad\left[\omega_{n} \equiv n \omega\right]
$$

The steady-state solution is already known from Section 5.6: recall,
$\mathrm{x}_{\mathrm{n}}(\mathrm{t})=\mathrm{A}_{\mathrm{n}} \cos \left(\mathrm{n} \omega \mathrm{t}-\delta_{\mathrm{n}}\right)$
where
$A_{n}=\frac{a_{n}}{\sqrt{\left(\omega_{0}{ }^{2}-n^{2} \omega^{2}\right)^{2}+(2 \beta n \omega)^{2}}}$
and
$\delta_{\mathrm{n}}=\arctan \left(\frac{2 \beta \mathrm{n} \omega}{\omega_{0}{ }^{2}-\mathrm{n}^{2} \omega^{2}}\right)$

/4/ Superposition

Equation (1) is linear, so... if

$$
\begin{array}{ll}
\underset{\text { then }}{f=} & \Sigma f_{\mathrm{n}}(\mathrm{t}) \\
\mathrm{x}= & \Sigma x_{\mathrm{n}}(\mathrm{t})^{\prime}=\Sigma \mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} \omega \mathrm{t}) \\
=\Sigma \cos \left(\mathrm{n} \omega \mathrm{t}-\delta_{\mathrm{n}}\right)
\end{array}
$$

"superposition principle" "the stationary solution"

Putting it into words:
Given the Fourier series for $f(t)$, we obtain the
Fourier series for $\mathrm{x}(\mathrm{t})$ by superposition, because the equation is linear.

So now we have here the asymptotic behavior of the oscillator; valid as $\mathrm{t} \rightarrow \infty$; independent of the transients, which are damped out by the effect of β.

Example 5.5.
An oscillator driven by periodic rectangular pulses

The forcing function

period $=\tau$
impulse duration $=\Delta \tau$

$$
\begin{gathered}
f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \omega t) \\
a_{0}=\frac{f_{\max } \Delta x}{\tau} \text { and } a_{n}=\frac{2 f_{\text {max }}}{n \pi} \sin \left(\frac{n \pi \Delta \tau}{\tau}\right) \\
(n \geq 1)
\end{gathered}
$$

The steady state solution

$$
\begin{aligned}
& x(t)=\sum_{n=0}^{\infty} A_{n} \cos \left(n \omega t-\delta_{n}\right) \\
& A_{n}=\frac{a_{n}}{\left[\left(\omega_{0}^{2}-n^{2} \omega^{2}\right)^{2}+4 \beta^{2} x^{2} \omega^{2}\right]^{1 / 2}} \\
& \tan \delta_{n}=\frac{2 \beta n \omega}{\omega_{0}^{2}-n^{2} \omega^{2}}
\end{aligned}
$$

The resonance triangle $\left(\omega_{n}=n \omega\right)$

Now we need a computer.

Example 5.5: an oscillator driven by a rectangular pulse

Figure 5.24
In Fig. 5.24,
$\tau=\tau_{0}$;
i.e., the period of the driving force is equal to the natural period, also, $\Delta \tau=0.25 \tau$.

Figure 5.24 The motion of a linear oscillator, driven by periodic rectangular pulses, with the drive period τ equal to the natural period τ_{0} of the oscillator (and hence $\omega=\omega_{0}$). The horizontal axis shows time in units of the natural period τ_{0}. As expected the motion is almost perfectly sinusoidal, with period equal to the natural period.

But there is a phase shift of 90 degrees.

Mathematica Calculations

... to verify Figure 5.24.
This explains why $\mathrm{x}(\mathrm{t})$ closely
(a) As a first case, set $\omega=\omega_{0}$.

Then plot the amplitude A_{n} and phase shift δ_{n} versus n :

approximates a harmonic oscillation with frequency ω and phase shift $\pi / 2$: because the Fourier contribution of $n=1$ is in resonance,

$$
\omega_{1}=1 \omega=\omega_{0} .
$$

Now consider three other cases.
(b) Case $\tau=1.5 \tau_{0} ; \quad$ i.e., $\omega=0.667 \omega_{0}$; no Fourier component is in resonance ; $\mathrm{n} \omega$ $=\omega_{0}$ would mean $\mathrm{n}=1.5$, but that is not an integer.

(c) Case $\tau=2 \tau_{0}$; i.e., $\omega=0.5 \omega_{0}$; the Fourier component with $n=2$ is in resonance ; $2 \omega=\omega_{0}$.

(d) Case $\tau=2.5 \tau_{0}$; i.e., $\omega=0.4 \omega_{0}$;
no Fourier component is in resonance;
$\mathrm{n} \omega=\omega_{0}$ would mean $\mathrm{n}=2.5$, but that is not an integer.

Figure 5.25

In Fig. 5.25, four values of τ are shown:

$$
\begin{aligned}
& \tau=1.0 \tau_{0} ; \\
& \tau=1.5 \tau_{0} ; \\
& \tau=2.0 \tau_{0} ; \\
& \tau=2.5 \tau_{0} ;
\end{aligned}
$$

I.e.,
 $\omega_{0} / \omega=\tau / \tau_{0}=$
 1.5
 2
 2.5

See Figure 5.25. Understand the resonance phenomenon: resonance occurs if $\mathrm{n} \omega=\omega_{0}$, for $\mathrm{n}=123 \ldots$

Section 5.9. RMS displacement

- Given a periodic position $\mathrm{x}(\mathrm{t})$, with period τ and mean value 0 , we define the RMS displacement by $\quad \mathrm{X}_{\mathrm{RMS}}=\sqrt{\left\langle\mathrm{x}^{2}\right\rangle}$ where $\left\langle x^{2}\right\rangle=1 / \tau \int_{-\tau / 2}^{\tau / 2} x(t)^{2} d t$.
- RMS is Root Mean Square ; provides a quantitative measure of the displacements ;
- Parseval's theorem:

$$
\left\langle\mathrm{x}^{2}\right\rangle=\mathrm{A}_{0}^{2}+1 / 2 \sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{A}_{\mathrm{n}}^{2}+\mathrm{B}_{\mathrm{n}}^{2}\right)
$$

The RMS displacement as a function of the drive period;

Figure 5.26 shows that resonance occurs at $n \omega=\omega_{0}$ for any integer n.

Figure 5.26 The RMS displacement of a linear oscillator, driven by periodic rectangular pulses, as a function of the drive period τ calculated using the first six terms of the Parseval expression (5.100). The horizontal axis shows τ in units of the natural period τ_{0}. When τ is an integral multiple of τ_{0} the response is especially strong.

Homework Assignment \#10
due in class Wednesday November 8
[47] Problem 4.53
[48] Problem 5.25 **
[49] Problem 5.30 **
[50] Problem 5.37 **
[51] Problem 5.44 **
[52] Problem $5.52^{* * *}$ [Computer]
Use the cover sheet.
Exam 2 will be Friday November 3;

- conservation of energy;
- Section 4.6; "complete solution";
- central forces;
- damped oscillations;

