Section 5.8
Fourier series solution
for the driven oscillator
Section 5.9
RMS displacement

Read Sections 5.8 and 5.9.

Fourier series solution for the driven
oscillator

/1/ To solve: Dx=f (1)
where

D = d?/dt* + 2  d/dt + o,°
and f (t) is a periodic driving force with
angular frequency o = 2x/t.
(B = damping constant; o, = natural
frequency)

We'll just determine the steady-state
solution ;i.e., the particular solution
that x(t) approaches ast — oo .

[2] Method:

By Fourier's theorem we can write

o0 o0
f) = > a_ cos(not) +> b sin(not)
n=0 n=0

(evenin t) (odd in t)

To make it simple, assume f(t) is even;
then b_= 0 for all n.




/3/ Recall Section 5.6

Consider the harmonic driving force
f=a_ cos(w,t) [w, =now]

The steady-state solution is already

known from Section 5.6: recall,

Xn(t) =A_ cos(no t— o, )

where
an
A, =
'\/((002 - n%w?)? + (2 B nw)?
and
2PN
0. = arctan
n ©.2 — N2>

/4] Superposition
Equation (1) is linear, so... if

f= Xf(@{®_ =Xa cos(not)
then

x= Xx () =XA cos(not-3_)

"superposition principle"
“the stationary solution”

Putting it into words:
Given the Fourier series for f(t) , we obtain the
Fourier series for x(t) by superposition, because
the equation is linear.

So now we have here the asymptotic
behavior of the oscillator; valid as t — «;
independent of the transients , which are
damped out by the effect of . 2




Example 5.5.
An oscillator driven by
periodic rectangular pulses

The forcing function
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The steady state solution

X = > An s (not =)

Ay = —2=
[(“’Z—n m) +¢Og:,az ﬂ
_szv( 5: = =hnw

é_,az'.—. Hleoz...

THE RESeNANCE TRIMNGLE (Lyzne)

o
o

T o

Now we need a computer.




Example 5.5: an
oscillator driven
by a rectangular
pulse

Figure 5.24

In Fig. 5.24,
T=Ty;5

i.e., the period of
the driving force
is equal to the
natural period,
also, At=0.251.
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Figure 5.24 The motion of a linear oscillator, driven by periodic
rectangular pulses, with the drive period t equal to the natural
period 7, of the oscillator (and hence @ = w,). The horizontal
axis shows time in units of the natural period 7,,. As expected the
motion is almost perfectly sinusoidal, with period equal to the

matural period, But there is a phase shift of 90 degrees.



Mathematica Calculations ...
... to verify Figure 5.24.

(a) As a first case, set o = @, -

Then plot the amplitude A_and phase

shift 6 versusn:

An vs n

6n vs n

This explains why x(t) closely
approximates a harmonic oscillation
with frequency o and phase shift n/2:
because the Fourier contribution of n = 11s
In resonance,

031=103=c00.




Now consider three other cases.

(b) Case 1=157,; 1e., 0 =0.6670,;
no Fourier component is in resonance ; No
= 0, would mean n = L.5, but that is
not an integer.
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(c)Case 1=21,; Lle,o=0J)a0,;
the Fourier component with n=2 1s in
resonance ; 20 = o, .
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(d) Case 1=251,; 1e,0=040,;

no Fourier component is in resonance ;

no = o, would mean n = 2.5, but that is
not an integer.
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Figure 5.25 See Figure 5.25. Understand the resonance
phenomenon: resonance occurs if
no =o,,forn=123 ...

In Fig. 5.25, four
values of t are shown:

t=1.0 Tys
t=1.5 Ty
t=2.0 Ty
t=2.5 T, -
ILe.,
w,/0=1/1,
115 02, 02,
é 0.1} n=2 0.1} W, /w=2.5
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Section 5.9. RMS displacement

Given a periodic position x(t), with period t

and mean value 0, we define the RMS

Xpms ~ \/<XT>

where (x*)=1/z I_T/ZT/Z x(0)? dt.

displacement by

RMS is Root Mean Square ; provides a

quantitative measure of the displacements ;

T

5F

0f

Parseval's theorem:

o0
(x%)= AO2 +1
n=1

(A,2+B,?)

-10



The RMS displacement as a function of the drive period;
Figure 5.26 shows that resonance occurs at no = o, for any integer n .
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Figure 5.26 The RMS displacement of a linear oscillator, driven by
periodic rectangular pulses, as a function of the drive period 7 —
calculated using the first six terms of the Parseval expression (5.100).
The horizontal axis shows 7 in units of the natural period 7,. When ©
is an integral multiple of T, the response is especially strong. |
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Homework Assignment #10

due in class Wednesday November 8
[47] Problem 4.53

[48] Problem 5.25 **

[49] Problem 5.30 **

[50] Problem 5.37 **

[51] Problem 5.44 **

[52] Problem 5.52 *** [Computer]

Use the cover sheet.

Exam 2 will be Friday November 3;
[ conservation of energy;

(4 Section 4.6; "complete solution";
A central forces;

d damped oscillations;
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