Remaining ...

Chapter 6.

Calculus of Variations

- A topic in mathematics:

Find the function that minimizes an integral.

- Solved by Leonhard Euler and Joseph-Louis Lagrange.
- Applies to a range of interesting problems.

Chapter 7.

Lagrange's Equations

- Lagrange developed a powerful method for deriving the equations of motion, which can be applied to generalized coordinates.
- It's related to the calculus of variations, by Hamilton's principle of least action

Chapter 8. Motion with a Two-body Central Force

- For example, the motion of the planets

Chapter 6.
 The Calculus of Variations
 Read Chapter 6.
 We'll spend only one week on Chapter 6.

THE VARIATIONAL PROBLEM

Consider a quantity S of this form,

$$
S=\int_{x_{1}}^{x_{2}} f\left(y(x), y^{\prime}(x), x\right) d x
$$

where $y(x)$ is a function whose values are specified at x_{1} and x_{2},

$$
\mathrm{y}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1} \quad \text { and } \quad \mathrm{y}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2}
$$

also $y^{\prime}(x) \equiv d y / d x$.

Terminology
$\mathrm{S}[\mathrm{y}]$ is an example of a functional.
a function: $\quad u \rightarrow g(u)$
a functional: $\quad y(x) \rightarrow S[y]$

There are an infinite number of functions from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$;

and the value of S changes when we change the function.

The "variational problem" is to find the function $\mathrm{y}(\mathrm{x})$ for which S is minimum (or, maximum).

In the calculations below I'll assume that we seek the minimum of S; but the same equations apply for the maximum.

$$
\begin{aligned}
& \text { We say, "S is stationary". } \\
& \qquad \delta S=0 .
\end{aligned}
$$

Let $\mathrm{y}(\mathrm{x})$ denote the function that makes S minimum,

$$
S[y(x)]=\text { minimum value of } S ;
$$

then for any function ${ }^{(\dagger)} \varepsilon(\mathrm{x})$,
$\mathrm{S}[\mathrm{y}(\mathrm{x})+\varepsilon(\mathrm{x})]=\mathrm{S}[\mathrm{y}(\mathrm{x})]+\delta \mathrm{S}$ where $\delta S>0$.

Now let $\varepsilon(\mathrm{x})$ be very small ("infinitesimal") and calculate δ S to linear accuracy in $\varepsilon(x)$.
(\dagger)
but we must keep the endpoints fixed;
that is, $\varepsilon\left(\mathrm{x}_{1}\right)=0$ and $\varepsilon\left(\mathrm{x}_{2}\right)=0$.

Define $\quad \delta \mathrm{S}=\mathrm{S}[\mathrm{y}+\varepsilon]-\mathrm{S}[\mathrm{y}]$
The condition for $\mathrm{y}(\mathrm{x})$ to be the function for which S has the minimum value, is that the linear approximation of δS must be equal to 0 for any ε (x).
In other words, $\delta S=O\left(\varepsilon^{2}\right)$.
Or, $\quad \delta \mathrm{S}=0$ to linear order .
Analogy: The minimum of a function $g(u)$ occurs where $d g / d u=0$.

The minimum of a functional STy] occurs where

$$
\frac{\delta S}{\delta y(x)}=0 \quad \text { for all } x
$$

Additional justification:

$\delta y(x)=\varepsilon(x)$; and so $\delta S / \delta y$ is the coefficient of the linearized approximation. If this coefficient is 0 then $y(x)$ is at the minimum.

OK, now calculate δS to linear order...

$$
\begin{aligned}
\delta S= & \int_{x_{1}}^{x_{2}} f\left[y+\epsilon, y^{\prime}+\epsilon^{\prime}, x\right] d x \\
& -\int_{x_{1}}^{x_{2}} f\left(y, y^{\prime}, x\right) d x
\end{aligned}
$$

\& apply Taylor's theorem to linear orler

$$
\begin{aligned}
\delta S= & \int_{x_{1}}^{x_{2}}\left\{f\left(y, y^{\prime}, x\right)+\epsilon \frac{\partial f}{\partial y}+\epsilon^{\prime} \frac{\partial f}{\partial y^{\prime}}\right\} d x \\
& -\int_{x_{1}}^{x_{2}} f\left(y, y^{\prime}, x\right) d x \\
\delta S= & \int_{x_{1}}^{x_{2}}\left\{\epsilon(x) \frac{\partial f}{\partial y}+\frac{d \epsilon}{d x} \frac{\partial f}{\partial y^{\prime}}\right\} d x
\end{aligned}
$$

Integration ha parts

$$
\begin{gathered}
\frac{d \epsilon}{d x} \frac{\partial f}{\partial y^{\prime}}=\underbrace{\left.\frac{\partial f}{\partial y^{\prime}}\right]_{x_{1}}^{x_{2}}}_{\int_{x_{1}}^{x_{2}}(\prime \prime)=0 \text { because }=\epsilon \frac{d}{d x}\left[\epsilon \frac{\partial f}{\partial y^{\prime}}\right]} \\
\epsilon\left(x_{1}\right)=\epsilon(x) \frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right) \\
\text { (fixed endpoints) }
\end{gathered}
$$

Thus

$$
\delta_{S}=\int_{x_{1}}^{x_{2}} \epsilon(x)\left[\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right] d x
$$

We demand $\delta S=0$ for any $\epsilon(x)$. Only way that con be True is if

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0 \quad \begin{gathered}
\text { Euler } \\
\text { Lagrangei, } \\
\text { equal ion } \\
\hline
\end{gathered}
$$

Result

Given the functional

$$
S[y]=\int_{x 1}{ }^{x 2} f\left(y(x), y^{\prime}(x), x\right) d x
$$

where $\mathrm{y}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1}$ and $\mathrm{y}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2}$ are fixed; the function $\mathrm{y}(\mathrm{x})$ such that $\mathrm{S}[\mathrm{y}]$ is stationary obeys the Euler-Lagrange equation

$$
\begin{array}{cc}
\mathrm{d} & \partial \mathrm{f} \\
\mathrm{dx} & \partial \mathrm{y}^{\prime} \\
- & \underline{y} \\
\hline
\end{array}
$$

Preview of Chapter 7

Calculus of Variations (Ch 6)

$$
\begin{aligned}
& S=\int_{1}^{r_{2}} f\left(y, y^{\prime}, x\right) d x \\
& \delta S=0 \quad \longleftrightarrow \frac{d}{\partial x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=\frac{\partial f}{\partial y}
\end{aligned}
$$

In Chapter 7 we'll learn that the equation of motion for a mechanical system can be written as the Euler-Lagrange equation with

$\delta S=0 \quad$ "principle of lest action"

Example

the shortest distance between 2 points
Consider two points in 2 dimensions, $\mathrm{P}_{1}:\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{P}_{2}:\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.

Use the Euler-Lagrange equations to determine the path from P_{1} to P_{2} that has the shortest distance.
(Of course you know the answer, but get it from the Eu.-Lagr. equation.)

Calculation

"first integral"

E-L. quation $\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}\right)=0$
Therefore (...) = constant;
there fare $y^{\prime}=$ another constant $=m$
Solution $y(x)=m x+b$ what $\begin{aligned} & y_{1}=m x+b \\ & y_{2}=m x_{2}+b\end{aligned}$ 1.s., the straight line from $P_{1} \not{ }_{0} P_{2}$.

A couple of special cases

In general, $\quad f\left(\mathrm{y}(\mathrm{x}), \mathrm{y}^{\prime}(\mathrm{x}), \mathrm{x}\right)$;
\mapsto we need to solve the differential equation

$$
\frac{\partial f}{\partial y}=\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)
$$

Do you see that this is a second-order differential equation?

In two special cases we can reduce (\star) to a first-order diff. equation, with an unknown constant that we can find from the initial conditions (or other information).

First special case : when f does not depend explicitly on y

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=0 \Rightarrow \frac{\partial f}{\partial y^{\prime}}=a \text { constant } \\
& \frac{\partial f}{\partial y^{\prime}}=C, \text { the "first integral" } \\
& \text { TAYLOR PROBLEM 6.10 }
\end{aligned}
$$

Second special case: when f does not depend explicitly on x

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=0 \quad \Rightarrow \frac{d}{d x}\left[f\left(y, y^{\prime}\right)\right] \quad \text { TAYLOR } \\
& =\frac{\partial f}{\partial f} \frac{d y}{d x}+\frac{\partial f}{\partial y} \frac{d y^{\prime}}{} \quad \text { PROBLEM } \\
& 6.20 \\
& \frac{d}{d x}\left\{f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right\}=0 \\
& \begin{array}{l}
f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}=C \\
\text { the "first inter } m \text { l"" }
\end{array}
\end{aligned}
$$

Other comments...

- Fermat's Principle is an application of Euler's equation in classical optics.
- The Euler-Lagrange equation apply when we seek the stationary point of a functional. (A "point" in function space, means "a function".)
- Functional analysis in the path-integral form of quantum mechanics (R. P. Feynman) is based on $\exp \{i \mathrm{~S} / \hbar\}=$ the weighting of paths

Homework Assignment \#11 due in class Wednesday November 15
[51] Problem 6.7 *
[52] Problem 6.8*
[53] Problem 6.10 * and 6.20 **
[54] Problem 6.1* and 6.16 **
[55] Problem 6.19 **
[56] Problem $6.25^{* * *}$
Use the cover sheet.

Due Wednesday Nov. 8:

* Homework Assignment \#10

