Principal Definitions and Equations of Chapter 6

The Euler-Lagrange Equation
An integral of the form

$$
S=\int_{x_{1}}^{x_{2}} f\left[y(x), y^{\prime}(x), x\right] d x
$$

[Eq. (6.4)]
taken along a path $y=y(x)$ is stationary with respect to variations of that path if and only if $y(x)$ satisfies the Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0 \tag{6.13}
\end{equation*}
$$

Example 6.2.
The brachistochrone

Read Chapter 6.

We'll spend only one week on Chapter 6.

The brachistochrone problem was posed by Johann Bernoulli in 1696. He sent a copy of the problem to Isaac Newton as a challenge; he thought maybe Newton wouldn't be able to solve it. Newton solved the problem overnight and sent the solution back to Bernoulli anonymously, as a kind of insult, to say "this is easy".

THE BRACHISTOCHRONE

A small mass (ice cube, say) slides without friction down a curve from $(0,0)$ to $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.

What is the shape of the curve such that the ice cube slides to the bottom in the shortest time?

```
"brachisto - chrone"
            translates from Greek
                                    as "shortest - time"
```

 - the curve of fastest descent -

The function we need to determine is x(y).

That requires we make some appropriate changes in the equations from last time:
\square the independent variable today is " y ";

- the dependent variable today is " x ";
- the goal is to find $x(y)$.

$$
\begin{aligned}
& t_{12}=\frac{1}{\sqrt{2 g}} \int_{0}^{y_{2}} f\left(x, x^{\prime}, y\right) d y \quad \text { when } x^{\prime}=\frac{d x}{d y} \\
& f\left(x, x^{\prime}, y\right)=\frac{\sqrt{x^{\prime 2}+1}}{\sqrt{y}}
\end{aligned}
$$

An important point is that the endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are fixed.

$$
t_{12}=\int_{y_{11}}^{y_{2} / \underbrace{\frac{\sqrt{1+x^{\prime 2}}}{\sqrt{y}}}_{f\left(x, x^{\prime}, y\right)} d y / \sqrt{21} . \underbrace{2} .}
$$

Find the minimum of t_{12}.
STEP II Apply the Euler-Lagrange equation; x is the function, y is the indep. variable ...

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{d}{d y}\left(\frac{\partial f}{\partial x^{\prime}}\right) \\
0 & =\frac{d}{d y}\left[\frac{1}{\sqrt{y}} \frac{1}{2}\left(1+x^{\prime 2}\right)^{-\frac{1}{2}} 2 x^{\prime}\right] \\
& =\frac{d}{d y}\left[\sqrt{\sqrt{y}} \frac{x^{\prime}}{\sqrt{\left(1+x^{\prime}\right)}}\right]
\end{aligned}
$$

STEP III
Solve the differential equation.
We already have a first integral, because $\mathrm{f}(\mathrm{x}, \mathrm{x}, \mathrm{y})$ does not depend on x ! [Problem 6.10]

$$
\begin{aligned}
& \frac{x^{\prime}}{\sqrt{y} \sqrt{1+x^{\prime 2}}}=\text { constant }=\frac{1}{\sqrt{2 a}} \\
& \begin{array}{l}
\text { call the constant } 1 \text { N(2a). } \\
\text { and interpret } " \text { al later. }
\end{array} \\
& \frac{(x)^{2}}{y}=\left(1+x^{\prime 2}\right) \frac{1}{2 a} \Rightarrow(x)^{2}\left(\frac{1}{y}-\frac{1}{2 a}\right)=\frac{1}{2 a}
\end{aligned} x^{\prime}=\frac{d x}{d y}=\sqrt{\frac{y}{2 a-y}}
$$

This we can solve by direct integration.

Do the indefinite integral; put in the end points later.

$$
x=\int \sqrt{\frac{y}{2 a-y}} d y
$$

Change the variable y integration from y to θ, related by $y=a(1-\cos \theta)$

$$
\begin{aligned}
x & =\int \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} a \sin \theta d \theta \\
& =\int(1-\cos \theta) a d \theta \\
& =a(\theta-\sin \theta)
\end{aligned}
$$

\Rightarrow Parametric Equations for the Brachistochrone Curve Figure 6.5

$$
\begin{aligned}
& x=a(\theta-\sin \theta) \\
& y=a(1-\cos \theta)
\end{aligned}
$$

when θ goes from $0 \quad\left(\left(x_{1}, y_{1}\right)=(0,0)\right)$ to θ_{2} when $\left\{\begin{array}{l}x_{2}=a\left(\theta_{2}-\sin \theta_{2}\right) \\ y_{2}=a\left(1-\cos \theta_{2}\right)\end{array}\right.$
Note that the boundary $\left(x_{2}, y_{2}\right)$ determines the constants $\left(a, \theta_{2}\right)$.

Figure 6.5 The path for a roller coaster that gives the shortest time between the given points 1 and 2 is part of the cycloid with a 5

Final result,
The brachistochrone is a segment of a cycloid curve. [Bernoulli ; Newton]

Parametric equations

$$
\begin{aligned}
& \mathrm{x}(\theta)=\mathrm{a}(\theta-\sin \theta) \\
& \mathrm{y}(\theta)=\mathrm{a}(1-\cos \theta)
\end{aligned}
$$

The answer depends on two constants (a and θ_{2}) which are determined from the coordinates of the final point (x_{2} and y_{2}):

$$
\begin{aligned}
& x_{2}=a\left(\theta_{2}-\sin \theta_{2}\right) \\
& y_{2}=a\left(1-\cos \theta_{2}\right)
\end{aligned}
$$

Brachistochrone for

$$
\{\Delta x, \Delta y\}=\{1,1\}
$$

Compare different curves

The high point is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,0)$; the low point is $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(1 \mathrm{~m}, 1 \mathrm{~m})$. ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

shape of the track	time $(0,0) \rightarrow(1 \mathrm{~m}, 1 \mathrm{~m})$
straight line	0.6389 s
parabola	0.5952 s
circular arc	0.5923 s
brachistochrone	0.5832 s

4 tracks from $(0,0)$ to ($1 \mathrm{~m}, 1 \mathrm{~m})$

Mathematics of the Cycloid Curve

A circle (radius $=R$) rolls without slipping on the x axis.

What is the curve traced out by P, a point on the rolling circle?

$$
\begin{aligned}
& \mathrm{x}(\theta)=\mathrm{R}(\theta-\sin \theta) \\
& \mathrm{y}(\theta)=\mathrm{R}(1-\cos \theta)
\end{aligned}
$$

The circle rolls without slipping.

The Cycloid Curve

A related problem

The tautochrone problem -

- identify the curve such that the time of descent to the bottom (P) is the same for any initial point $\left(\mathrm{P}_{0}\right)$;

Figure 6.11 Problem 6.25

- solved by Christiaan Huygens. He proved, in his book Horologium Oscillatorium, published in 1673, that the curve is a cycloid.
= Taylor Problem 6.25.

Homework Assignment \#11
due in class Wednesday November 15
[51] Prob. 6.7*
[52] Prob. 6.8*
[53] Probs. 6.10* and 6.20**
[54] Probs. 6.1* and 6.16**
[55] Prob. 6.19**
[56] Prob. 6.25***
Use the cover sheet.

