Principal Definitions and Equations of Chapter 6

```
The Euler-Lagrange Equation
```

An integral of the form

$$S = \int_{x_1}^{x_2} f[y(x), y'(x), x] dx \qquad [Eq. (6.4)]$$

taken along a path y = y(x) is stationary with respect to variations of that path if and only if y(x) satisfies the Euler-Lagrange equation

$$\frac{\partial f}{\partial y} - \frac{d}{dx}\frac{\partial f}{\partial y'} = 0.$$
 [Eq. (6.13)]

Example 6.2. *The brachistochrone*

Read Chapter 6.

We'll spend only one week on Chapter 6.

The *brachistochrone problem* was posed by Johann Bernoulli in 1696. He sent a copy of the problem to Isaac Newton as a challenge; he thought maybe Newton wouldn't be able to solve it. Newton solved the problem overnight and sent the solution back to Bernoulli anonymously, as a kind of insult, to say "this is easy".

THE BRACHISTOCHRONE

A small mass (ice cube, say) slides without friction down a curve from (0,0) to (x_0,y_0) .

What is the shape of the curve such that the ice cube slides to the bottom in the shortest time?

"brachisto – chrone" translates from Greek as "shortest – time"

- the curve of fastest descent -

we need a formula for the time of descent.

Using Taylor's notations

The function we need to determine is x(y).

That requires we make some appropriate changes in the equations from last time:

- □ the independent variable today is "y";
- \Box the dependent variable today is "x";
- $\Box \quad the goal is to find x(y).$

An important point is that the endpoints (x_1, y_1) and (x_2, y_2) are fixed.

 $t_{12} = \int_{y_1}^{y_2} \frac{1}{\sqrt{y}} dy$ f(x,x',y)

Find the minimum of t_{12} .

<u>STEP II</u> Apply the Euler-Lagrange equation; *x* is the function, *y* is the indep. *variable ...*

<u>STEP III</u>

Solve the differential equation.

We already have a first integral, because f(x,x',y) does not depend on x! [Problem 6.10]

This we can solve by direct integration.

Do the indefinite integral; put in the end points later. Integration $\chi = \left(\sqrt{\frac{y}{2a-y}} \, dy \right)$ Change the variable of integration from y to 0, related by y = a (1- 1050) $x = \sqrt{\frac{1-\omega s\theta}{1+\omega s\theta}} a \sin \theta d\theta$ $=\int (1-\cos\theta) a d\theta$ $= a(\theta - sin\theta)$

⇒ Parametric Equations for the Brachistochrone Curve

Figure 6.5

 $\chi = a \left(\partial - \sin \theta \right)$ $Y = a(1 - \cos \theta)$ when & goes from O ((21, 41) = (0,01) to θ_2 where $\begin{cases} \chi_2 = \alpha (\theta_2 - \sin \theta_2) \\ Y_2 = \alpha (1 - \alpha s \theta_2) \end{cases}$ Note that the boundary (x2, Y2) determines The constants (a, Dz).

Figure 6.5 The path for a roller coaster that gives the shortest time between the given points 1 and 2 is part of the cycloid with a

2a

Final result,

The brachistochrone is a segment of a cycloid curve. [Bernoulli ; Newton]

Parametric equations

 $x(\theta) = a (\theta - \sin \theta)$ $y(\theta) = a (1 - \cos \theta)$

The answer depends on two constants (a and θ_2) which are determined from the coordinates of the final point (x $_2$ and y $_2$):

$$\chi_2 = \alpha \left(\theta_2 - \sin \theta_2 \right)$$

$$\chi_2 = \alpha \left(1 - \cos \theta_2 \right)$$

Compare different curves

The high point is $(x_1, y_1) = (0, 0)$; the low point is $(x_2, y_2) = (1 \text{ m}, 1 \text{ m})$. $(g = 9.8 \text{ m/s}^2)$

shape of the track	time (0,0) -> (1 m, 1 m)
straight line	0.6389 s
parabola	0.5952 s
circular arc	0.5923 s
brachistochrone	0.5832 s

Mathematics of the Cycloid Curve

A circle (radius = *R*) rolls without slipping on the x axis.

What is the curve traced out by P, a point on the rolling circle?

 $x(\theta) = R (\theta - \sin \theta)$ $y(\theta) = R (1 - \cos \theta)$

A related problem

The tautochrone problem -

– identify the curve such that the time of descent to the bottom (P) is the same for any initial point (P_0) ;

– solved by Christiaan Huygens. He proved, in his book *Horologium Oscillatorium*, published in 1673, that the curve is a cycloid.

= Taylor Problem 6.25.

Homework Assignment #11 due in class Wednesday November 15 [51] Prob. 6.7* [52] Prob. 6.8* [53] Probs. 6.10* and 6.20** [54] Probs. 6.1* and 6.16** [55] Prob. 6.19** [56] Prob. 6.25*** **Use the cover sheet.**