Principal Definitions and Equations of Chapter 6

The Euler-Lagrange Equation
An integral of the form

$$
\begin{equation*}
S=\int_{x_{1}}^{x_{2}} f\left[y(x), y^{\prime}(x), x\right] d x \tag{6.4}
\end{equation*}
$$

taken along a path $y=y(x)$ is stationary with respect to variations of that path if and only if $y(x)$ satisfies the Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0 \tag{6.13}
\end{equation*}
$$

Examples
EXAMPLE 6.1
\square the shortest path between two points on a plane

EXAMPLE 6.2

\square the brachistochrone
EXAMPLE 6.3
\square the shortest path between two points on a plane, using more than two variables.

Homework Assignment \#11 due Wednesday November 15
[51] Prob. 6.7*
[52] Prob. 6.8*
[53] Probs. 6.10* and 6.20**
[54] Probs. 6.1* and 6.16**
[55] Prob. 6.19**
[56] Prob. 6.25***
Use the cover sheet.

Examples

PROBLEM 6.7 [51]

- Find the geodesic on a cylinder.

PROBLEM 6.8 [52]

- Show that a roller coaster car has $\mathrm{v}=\mathrm{SQRT}(2 \mathrm{gy})$.

PROBLEM 6.9

- Find the curve that makes

$$
\int_{0}^{p}\left(y^{\prime 2}+y y^{\prime}+y^{2}\right) d x x_{\text {stationary. }}
$$

Examples

PROBLEM 6.10 [53]

- Find the "first integral," if $\mathrm{f}(\mathrm{y}, \mathrm{y}, \mathrm{x})$ is independent of y.

PROBLEM 6.11

- Find the curve that makes

$$
\left.\int_{x 1} x^{22} \operatorname{SQRTI} x\left(1+y^{\prime 2}\right)\right] d x
$$

stationary.
PROBLEM 6.12

- Find the curve that makes

$$
\int_{x 1}^{x 2} x \operatorname{SQRT}\left[\left(1+y^{\prime 2}\right)\right] d x
$$

stationary.

Examples

PROBLEM 6.13

- Find the geodesic on a sphere.

PROBLEM 6.14

- Show that the brachistochrone is a section of a cycloid curve.

PROBLEM 6.15

- Solve the brachistochrone problem with an initial speed.

Examples

PROBLEM 6.16 [54]

- Find the geodesic on a sphere.

PROBLEM 6.17

- Find the geodesic on a cone.

PROBLEM 6.18

- Find the shortest path on a plane, using polar coordinates.
Examples
PROBLEM 6.19 [55]- The soap bubble problem
PROBLEM 6.20- Find the "first integral," if $\mathrm{f}(\mathrm{y}, \mathrm{y}, \mathrm{x})$is independent of x .
PROBLEM 6.21
- Solve the brachistochrone problem again.

Taylor Problem 6.22 ***

Consider a flexible string with fixed length $=1$.

One end of the string is pinned at the origin $(0,0)$ in the xy-plane. The other end can be pinned at any point on the x axis. Then the string forms a curve in the xy-plane.

Determine the curve for which the area A is maximum.
(You can probably guess the answer, but can you prove it?)

$$
A=\int_{0}^{x_{F}} y d x
$$

But this does not have the right form, because the endpoints are not fixed.

Let $\mathrm{s}=$ arclength and describe the curve by $y(s)$.
Now the endpoints are fixed, because $y(0)=0$ and $y(l)=0$.

$$
\begin{aligned}
& (d s)^{2}=(d x)^{2}+(d y)^{2} \\
& d x=\sqrt{(d s)^{2}-(1 y)^{2}}=\sqrt{1-\left(\frac{d y}{d s}\right)^{2}} d s \\
& A=\int_{0}^{2} y(s) \sqrt{1-\left(y^{\prime}\right)^{2}} d s \quad \sim y^{\prime}=\frac{d y}{d s} \\
& f\left(y, y^{\prime}, s\right)=y \sqrt{1-\left(y^{\prime}\right)^{2}} \\
& \frac{\partial f}{\partial y}=\sqrt{1-\left(y^{\prime}\right)^{2}} \text { and } \frac{\partial f}{\partial y^{\prime}}=\frac{-y y^{\prime}}{\sqrt{\left.1-y^{\prime}\right)^{2}}}
\end{aligned}
$$

The Euler Lagrange quatime \dot{s}^{\prime}

$$
\sqrt{1-(4)^{2}}=\frac{d}{d s}\left[\frac{-4 y^{\prime}}{\sqrt{\left.1-(y)^{2}\right)^{2}}}\right]
$$

We already know the first integral, because $\frac{\partial f}{\partial s}=0$.

$$
\begin{gathered}
f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}=\text { constant }=C \\
\frac{d}{d s}\left[f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right]=\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}-y^{\prime \prime} \frac{\partial f}{\partial y^{\prime}}-y^{\prime} \frac{d}{d s}\left(\frac{\partial f}{\partial y^{\prime}}\right) \\
=y^{\prime}\left[\frac{\partial f}{\partial y}-\frac{d}{d s}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right]=0
\end{gathered}
$$

$$
\begin{aligned}
& y \sqrt{1-\left(y^{\prime}\right)^{2}}-\frac{-y\left(y^{1}\right)^{2}}{\sqrt{1-\left(y^{\prime}\right)^{2}}}=c \\
& \quad=\frac{y}{\sqrt{1-\left(y^{2}\right)^{2}}}\left[1-\left(y^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]=\frac{y}{\sqrt{1-\left(y^{\prime}\right)^{2}}}
\end{aligned}
$$

To solve: $y=c \sqrt{1-\left(\frac{d y}{d s}\right)^{2}}$
We can solve it by a change of variables.
Let $y=R \sin \theta$
$R=$ some constant
$\theta=$ the new variable

$$
\begin{aligned}
& \frac{d y}{d s}=R \cos \theta \frac{d \theta}{d s} \\
& R \sin \theta=C^{\prime} \sqrt{1-R^{2} \cos ^{2} \theta\left(\frac{d \theta}{d s}\right)^{2}}
\end{aligned}
$$

The solution: $R^{2}\left(\frac{d \theta}{d s}\right)^{2}=1 \longleftarrow \theta=s / R$ whim gives $R \sin \theta=C \sqrt{T-\cos ^{2} \theta}$

$$
=C \sin \theta \text {, so } R=C
$$

Result $y(s)=R \sin (s / R)$ and $R=C$.
(So far, R is an unknown constant.)

The result is the equation for a half circle, in terms q arclengta s

$$
\begin{aligned}
& x=R-R \cos \theta \\
& y=R \sin \theta \quad y=R \sin \left(\frac{s}{R}\right) V \\
& s(\theta)=R \theta \quad\{\quad
\end{aligned}
$$

But now, what is R?

PROBLEM 6.23

Direct an aircraft flying long distance through a wind shear .

PROBLEM 6.24
Solve an optics problem using Fermat's principle.

Examples

PROBLEM 6.25 [56]

- The tautochrone problem

Quiz Question
Define $S=\int_{\mathrm{t} 0}{ }^{\mathrm{t}}\left\{1 / 2 \mathrm{~m}(\mathrm{dx} / \mathrm{dt})^{2}-\mathrm{U}(\mathrm{x}(\mathrm{t}))\right\} \mathrm{dt}$
where $\mathrm{x}\left(\mathrm{t}_{0}\right)=\mathrm{x}_{0}$ and $\mathrm{x}\left(\mathrm{t}_{1}\right)=\mathrm{x}_{1}$.
Derive the Euler-Lagrange equation, for the path from ($\mathrm{t}_{0}, \mathrm{x}_{0}$) to ($\mathrm{t}_{1}, \mathrm{x}_{1}$) with the minimum value of S.

In mechanics, S is

called the "action."

