FRIDAY'S QUIZ QUESTION

AN EXAMPLE IN THE CALCULUS OF VARIATIONS ...

You should recognize the Euler-Lagrange equation here.
GIVEN $\quad \mathrm{S}=\int\left[1 / 2 \mathrm{~m} \dot{\mathrm{x}}^{2}-\mathrm{U}(\mathrm{x})\right] \mathrm{dt}$, find the $\mathrm{x}(\mathrm{t})$ that makes $\mathrm{S}[\mathrm{x}(\mathrm{t})]$ stationary. SOLUTION It's an Euler problem, so the solution is given by Euler's equation,

$$
\frac{\partial f}{\partial x}=\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}
$$

where $\mathrm{f}(\mathrm{x}, \dot{\mathrm{x}}, \mathrm{t})=1 / 2 \mathrm{~m} \dot{\mathrm{x}}^{2}-\mathrm{U}(\mathrm{x})$.

Chapter 7. Lagrange's Equations
1 Historical Introduction
Joseph-Louis Lagrange
(1736-1813)
Berlin; Paris;
Mécanique analytique

William Rowan Hamilton
(1805-1865)
Dublin;
"On a General Method in Dynamics"

Section 7.1. Lagrange's Equations for Unconstrained Motion

What do we mean by "unconstrained" motion?

The particle moves in 3 dimensions under the influence of a conservative net force.

The potential energy is $U(\mathbf{r})$.

$$
\begin{aligned}
& \mathrm{T}=1 / 2 \mathrm{~m}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \\
& \mathrm{U}=\mathrm{U}(\mathbf{r})
\end{aligned}
$$

The Lagrangian is
$£=\mathrm{T}-\mathrm{U}$. (Notation: Script L)
(An example of "constrained motion" would be something like curvilinear motion of a bead on a wire, or planar motion.)

2 Lagrange's equations
We define $\quad £=\mathrm{T}-\mathrm{U}$.
Think of this as a function of $\{x, y, z\}$ and $\{\dot{x}, \dot{y}, \dot{z}\} \quad ; i . e .$,

$$
£=£(\mathbf{r}, \dot{\mathbf{r}}) \quad \mathbf{r}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
$$

Now, understand the partial derivative :

$$
\partial / \partial \mathrm{x} \quad \text { means }
$$

vary x but keep the other 5 variables
\{ $y, z, \dot{x}, \dot{y}, \dot{z}\}$ fixed;

$$
\partial \boldsymbol{£} / \partial \mathbf{x}=-\partial \mathrm{U} / \partial \mathrm{x}=\mathrm{F}_{\mathrm{x}}(\mathbf{r}) .
$$

Now, the other partial derivative :
$\partial / \partial \dot{x} \quad$ means
vary \dot{x} but keep the all other 5 variables \{ $\mathrm{x}, \mathrm{y}, \mathrm{z}, \dot{\mathrm{y}}, \mathrm{z}$ \} fixed;

$$
\partial £ / \partial \dot{\mathrm{X}}=\partial \mathrm{T} / \partial \dot{\mathrm{x}}=\mathrm{m} \dot{\mathrm{x}}
$$

Newton's second law: $\mathrm{F}_{\mathrm{x}}(\mathrm{x})=\boldsymbol{m} \ddot{\mathrm{x}} \Rightarrow$

$$
\frac{\partial \boldsymbol{£}}{\partial \mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial \boldsymbol{£}}{\partial \dot{\mathrm{x}}}
$$

Similarly for y and z;

$$
\frac{\partial £}{\partial \mathrm{y}}=\frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial £}{\partial \dot{\mathrm{y}}} ; \boldsymbol{\varepsilon} \frac{\partial £}{\partial \mathrm{z}}=\frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial £}{\partial \dot{\mathrm{z}}}
$$

Lagrange's equations

For unconstrained motion,

$$
\frac{\partial \boldsymbol{£}}{\partial \mathbf{r}}=\frac{\mathrm{d}}{\mathrm{dt}} \quad \frac{\partial \boldsymbol{£}}{\partial \dot{\mathbf{r}}} \quad \text { (3 eqs.) }
$$

$$
\text { for } \mathbf{r}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\},
$$

where $£=\mathrm{T}-\mathrm{U}$.
Remember the meanings of the partial derivatives!
$\partial / \partial \mathrm{x}$ means vary x but keep the other 5 variables fixed;
$\partial / \partial \dot{x}$ means vary \dot{x} but keep the other 5 variables fixed.

You should see that the equation looks like the Euler -Lagrange equation. Then what is the variational problem?

Hamilton's action integral

Define the action integral S by

$$
S(\Gamma)=\int_{t_{1}}^{t_{2}} £(\mathbf{r}, \mathbf{r}) d t
$$

where:

- $\quad \Gamma$ is a path in space from \mathbf{r}_{1} to \mathbf{r}_{2}
- $\mathbf{r}(\mathrm{t})$ is a function of time that traverses the path as $t: t_{1} \rightarrow t_{2}$
- Important: $\mathbf{r}\left(\mathrm{t}_{1}\right)=\mathbf{r}_{1}$ and $\mathbf{r}\left(\mathrm{t}_{2}\right)=\mathbf{r}_{2}$.

The actual path taken by m under the influence of the force $-\nabla \mathrm{U}$, in order to move from ($\mathrm{t}_{1}, \mathbf{r}_{1}$) to ($\mathrm{t}_{2}, \mathbf{r}_{2}$), will be the path $\Gamma_{\text {actual }}$ for which S is minimum.

"least action"

PATHS from \vec{r}_{1} (at t_{1}) to \vec{r}_{2} (at t_{2})

Hamilton's Principle

Suppose the particle moves from ($\mathrm{t}_{1}, \mathrm{r}_{1}$) to ($\mathrm{t}_{2}, \mathbf{r}_{2}$), under the influence of the force $\mathbf{F}=-\nabla \mathbf{U}$. The trajectory of the particle is $\mathbf{r}(\mathrm{t})$, which defines a path $\Gamma_{\text {actual }}$

Hamilton's Principle states

$$
\min _{\{\Gamma\}} S(\Gamma)=S\left(\Gamma_{\text {actual }}\right)
$$

Of all the paths from $\left(\mathrm{t}_{1}, \mathrm{r}_{1}\right)$ to $\left(\mathrm{t}_{2}, \mathrm{r}_{2}\right)$, the particle follows the path of least action.

Note: The endpoints are fixed in both space and time.

Proof of Hamilton's Principle

$$
S(\Gamma)=\int_{t_{1}}^{t_{2}} £(\mathbf{r}, \mathbf{r}) d t
$$

What do I need to prove?
min $\mathrm{S}(\Gamma)$ occurs when $\mathbf{r}(\mathrm{t})$ obeys
Lagrange's equations _

$$
\frac{\partial \boldsymbol{£}}{\partial \mathbf{r}}=\frac{\mathrm{d}}{\mathrm{dt}} \quad \frac{\partial \boldsymbol{£}}{\partial \mathbf{r}}
$$

- The minimum over all paths Γ
[from $\left(\mathrm{t}_{1}, \mathbf{r}_{1}\right)$ to $\left(\mathrm{t}_{2}, \mathbf{r}_{2}\right)$]
has $\delta S=0$.
- The calculus of variations;

$$
\begin{aligned}
& \delta \mathrm{S}=\int_{\mathrm{t} 1}^{\mathrm{t} 2}\{(\partial £ / \partial \mathbf{r}) \cdot \delta \mathbf{r}+(\partial £ / \dot{\partial} \mathbf{r}) \cdot \delta \dot{\mathbf{r}}\} \mathrm{dt} \\
& 2 \mathrm{nd} \text { term }=\mathrm{d} / \mathrm{dt}[(\partial £ / \dot{\mathbf{r}}) \cdot \delta \mathbf{r}] \\
&-\mathrm{d} / \mathrm{dt}[(\partial £ / \dot{\mathbf{r}})] \cdot \delta \mathbf{r}
\end{aligned}
$$

We require $\delta \mathbf{r}=0$ at the endpoints, so the integral of $\mathrm{d} / \mathrm{dt}[$...] is zero.
$\therefore \delta \mathrm{S}=\int_{\mathrm{t} 1}^{\mathrm{t} 2}\{(\partial £ / \partial \hat{\mathrm{r}})-\mathrm{d} / \mathrm{dt}(\partial £ / \dot{\partial} \mathbf{r})\} \bullet \delta \mathbf{r} \mathrm{dt}$

- δS must be $=0$ for any variation of the path, i.e., for any function $\delta \mathbf{r}(\mathrm{t})$. The only way that can be true is if the function in \{..\} brackets is 0 .
- For the least action, $\mathbf{r}(\mathrm{t})$ obeys Lagrange's equation.

4 Generalized coordinates

We can always use Cartesian coordinates $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ to specify the trajectory of the particle.
But suppose some other coordinates could be used, say, $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$.

For example, we could use spherical polar coordinates
$\{\mathrm{r}, \theta, \varphi\}$.

We would have a 1-to-1 correspondence between $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$ and $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$.
That is, \exists functions

$$
q_{i}=q_{i}(\mathbf{r}) \quad \text { for } \quad i=1,2,3
$$

or

$$
\mathbf{r}=\mathbf{r}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right)
$$

Then we could write

$$
£=£\left(q_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \dot{\mathrm{q}}_{1}, \dot{\mathrm{q}}_{2}, \dot{\mathrm{q}}_{3}\right)
$$

and

$$
\mathrm{S}=\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} £\left(\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3} \dot{q}_{1} \dot{\mathrm{q}}_{2} \dot{\mathrm{q}}_{3}\right) \mathrm{dt}
$$

The actual path of the particle has least action, $\delta S=0$; that's Hamilton's principle.

The equation $\delta S=0$ gives us Lagrange's equations, but now in terms of $\left\{q_{1}, q_{2}, q_{3}\right\}$.

So the equations of motion in terms of any set of generalized coordinates, are

$$
\frac{\partial £}{\partial \mathrm{q}_{\mathrm{i}}}=\frac{\mathrm{d}}{\mathrm{dt}} \quad \frac{\partial £}{\partial \dot{\mathrm{q}}_{\mathrm{i}}}
$$

3 equations;

$i=123$

To solve a problem using the Lagrangian method:

1. Define generalized coordinates.
2. Write T and U in terms of the g.c..
3. $£=\mathrm{T}-\mathrm{U}$
4. Write down Lagrange's equations.
5. Solve the equations.

Example 7.2 from Taylor

using Plane Polar Coordinates

FIGURE 7.1

$$
\begin{aligned}
& x=r \cos \phi \\
& y=r \sin \phi \\
& \dot{x}=\dot{r} \cos \phi-r \dot{\phi} \sin \phi \\
& \dot{y}=\dot{r} \sin \phi+r \dot{\phi} \cos \phi \\
& \mathrm{Z}=0 \\
& \text { Figure 7.1 The velocity of a particle expressed in } \\
& \text { two-dimensional polar coordinates. } \\
& \mathcal{L}=T-U=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U_{c}(x, y) \\
& =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r, \phi)
\end{aligned}
$$

The r equation $\frac{\partial \mathcal{L}}{\partial r}=\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{r}}\right)$

$$
\begin{aligned}
& m r \dot{\phi}^{2}-\frac{\partial U}{\partial r}=m{ }^{\prime \prime} r=F_{r}+m r \dot{\phi}^{2} \\
& a_{r}=\dot{r}-r \dot{\phi}^{2}
\end{aligned}
$$

The ϕ equation $\frac{\partial \mathcal{L}}{\partial \phi}=\frac{d}{d t}\left(\frac{\partial \mathcal{I}}{\partial \dot{\phi}}\right)$

Problem 7.2 from Taylor

"Write down the Lagrangian for a one-dimensional particle moving along the x axis and subject to a force $F=-k x$ (with k positive). Find the Lagrange equation of motion and solve it."

$$
\begin{aligned}
& £=1 / 2 \mathrm{~m}^{2}-1 / 2 \mathrm{kx}{ }^{2} \\
& \partial £ / \partial \mathrm{x}=(\mathrm{d} / \mathrm{dt}) \partial £ / \partial \mathbf{x} \\
& -\mathrm{kx}=(\mathrm{d} / \mathrm{dt}) \mathrm{m} \dot{\mathrm{x}}=\mathrm{m} \ddot{\mathrm{x}} \\
& \ddot{\mathrm{x}}=-\omega^{2} \mathrm{x} \Rightarrow \mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}-\delta)
\end{aligned}
$$

Homework Assignment 12

due in class Wednesday November 22
[61] Problem 7.2^{*}
[62] Problem 7.3^{*}
[63] Problem $7.8^{* *}$
[64] Problem 7.14*
[65] Problem 7.21*
[66] Problem $7.31^{* *}$
[67] Problem $7.43^{* * *}$ [computer]

Use the cover sheet.

