FRIDAY'S QUIZ QUESTION

AN EXAMPLE IN THE CALCULUS OF VARIATIONS ...

GIVEN $S = \int [\frac{1}{2} m x^{2} - U(x)] dt$, find the x(t) that makes S[x(t)] stationary.

<u>SOLUTION</u> It's an Euler problem, so the solution is given by Euler's equation,

$$\frac{\partial f}{\partial x} = \frac{d}{dt} \frac{\partial f}{\partial \dot{x}}$$

where f (x, $\overset{\bullet}{x}$,t) = $\frac{1}{2}$ m $\overset{\bullet}{x}^{2}$ – U(x).

Chapter 7. Lagrange's Equations

Historical Introduction

Joseph-Louis Lagrange

(1736-1813)

Berlin; Paris;

Mécanique analytique

William Rowan Hamilton

(1805 - 1865)

Dublin:

"On a General Method in Dynamics"

Section 7.1. Lagrange's Equations for **Unconstrained** Motion

What do we mean by "unconstrained" motion?

The particle moves in 3 dimensions under the influence of a conservative net force.

The potential energy is $U(\mathbf{r})$.

 $T = \frac{1}{2} m (x^2 + y^2 + z^2)$

 $U = U(\mathbf{r})$

The Lagrangian is $\mathbf{\pounds} = T - U$. (Notation: Script L)

(An example of "constrained motion" would be something like curvilinear motion of a bead on a wire, or planar motion.)

2 <u>Lagrange's equations</u>

We define $\mathbf{\pounds} = \mathbf{T} - \mathbf{U}$.

Think of this as a function of $\{x,y,z\}$ and $\{x, y, z\}$; i.e., $\pounds = \pounds(\mathbf{r}, \mathbf{r})$ $\mathbf{r} = \{x,y,z\}$

Now, understand the partial derivative :

 $\partial / \partial x$ means vary x but keep the other 5 variables { y, z, x, y, z } fixed;

 $\partial \mathbf{\pounds} / \partial \mathbf{x} = - \partial \mathbf{U} / \partial \mathbf{x} = \mathbf{F}_{\mathbf{x}}(\mathbf{r})$.

Now, the other partial derivative : $\partial / \partial x$ means vary \dot{x} but keep the all other 5 variables { x, y, z, y, z } fixed; $\partial \pounds / \partial \mathbf{x} = \partial T / \partial \mathbf{x} = \mathbf{m} \mathbf{x}$ Newton's second law: $F_x(x) = mx \Rightarrow$ $\frac{\partial \pounds}{\partial x} = \frac{d}{dt} \quad \frac{\partial \pounds}{\partial x}$ Similarly for y and z; $\frac{\partial \pounds}{\partial y} = \frac{d}{dt} \frac{\partial \pounds}{\partial y} ; \pounds \frac{\partial \pounds}{\partial z} = \frac{d}{dt} \frac{\partial \pounds}{\partial z}$ These are Lagrange's equations.. 3

Lagrange's equations

For unconstrained motion,

$$\frac{\partial \mathbf{\pounds}}{\partial \mathbf{r}} = \frac{d}{dt} \quad \frac{\partial \mathbf{\pounds}}{\partial \dot{\mathbf{r}}} \quad (3 \text{ eqs.})$$
for $\mathbf{r} = \{x, y, z\}$,

where $\mathbf{\pounds} = T - U$.

Remember the meanings of the partial derivatives!

 $\partial /\partial x$ means vary x but keep the other 5 variables fixed;

 $\partial /\partial x$ means vary x but keep the other 5 variables fixed.

You should see that the equation looks like the Euler -Lagrange equation. Then what is the variational problem?

<u>Hamilton's action integral</u>

Define the action integral S by

$$S(\Gamma) = \int_{t_1}^{t_2} \pounds(\mathbf{r}, \mathbf{r}) dt$$

where:

- Γ is a path in space from \mathbf{r}_1 to \mathbf{r}_2
- **r**(t) is a function of time that traverses the path as $t: t_1 \rightarrow t_2$
- Important: $\mathbf{r}(t_1) = \mathbf{r}_1$ and $\mathbf{r}(t_2) = \mathbf{r}_2$.

3

Hamilton's Principle

The actual path taken by *m* under the influence of the force $-\nabla U$, in order to move from $(t_1, \mathbf{r_1})$ to $(t_2, \mathbf{r_2})$, will be the path Γ_{actual} for which S is minimum.

"least action"

<u>Hamilton's Principle</u>

Suppose the particle moves from (t_1 , r_1) to (t_2 , r_2), under the influence of the force $\mathbf{F} = -\nabla \mathbf{U}$. The trajectory of the particle is $\mathbf{r}(t)$, which defines a path Γ_{actual}

Hamilton's Principle states

$$\min_{\{\Gamma\}} S(\Gamma) = S(\Gamma_{actual})$$

Of all the paths from (t_1 , r_1) to (t_2 , r_2), the particle follows the <u>path of least</u> <u>action</u>.

Note: The endpoints are fixed in both space and time.

$$S(\Gamma) = \int_{t_1}^{t_2} \pounds(\mathbf{r}, \mathbf{r}) dt$$

What do I need to prove?

min S(Γ) occurs when **r**(t) obeys Lagrange's equations ___

 $\frac{\partial \mathbf{\pounds}}{\partial \mathbf{r}} = \frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial \mathbf{\pounds}}{\partial \mathbf{\dot{r}}}$

• The minimum over all paths Γ [from (t_1, r_1) to (t_2, r_2)] has $\delta S = 0$. • The calculus of variations; $\delta S = \int_{t_1}^{t_2} \{ (\partial \pounds / \partial \mathbf{r}) \cdot \delta \mathbf{r} + (\partial \pounds / \partial \mathbf{r}) \cdot \delta \mathbf{r} \} dt$ 2nd term = $d / dt [(\partial \pounds / \partial \mathbf{r}) \cdot \delta \mathbf{r}]$ $- d / dt [(\partial \pounds / \partial \mathbf{r})] \cdot \delta \mathbf{r}$

We require $\delta \mathbf{r} = 0$ at the endpoints, so the integral of d/dt [...] is zero.

 $\therefore \delta S = \int_{t1}^{t2} \{ (\partial \pounds / \partial \mathbf{r}) - d/dt (\partial \pounds / \partial \mathbf{r}) \} \cdot \delta \mathbf{r} dt$

- δS must be = 0 for any variation of the path, i.e., for any function δr(t). The only way that can be true is if the function in {..} brackets is 0.
- For the least action, r(t) obeys
 Lagrange's equation.

4

<u>Generalized coordinates</u>

We can always use Cartesian coordinates {x, y, z} to specify the trajectory of the particle.

But suppose some other coordinates could be used, say, $\{q_1, q_2, q_3\}$.

We would have a 1-to-1 correspondence between $\{q_1, q_2, q_3\}$ and $\{x, y, z\}$. That is, \exists functions $q_i = q_i (r)$ for i = 1, 2, 3or $\mathbf{r} = \mathbf{r} (q_1, q_2, q_3).$ Then we could write $\pounds = \pounds (q_1, q_2, q_3, q_1, q_2, q_3)$ and S = $\int_{t_1}^{t_2} \mathbf{\pounds} (\mathbf{q}_1 \mathbf{q}_2 \mathbf{q}_3 \mathbf{q}_1 \mathbf{q}_2 \mathbf{q}_3) dt$ The actual path of the particle has least action, $\delta S = 0$; that's Hamilton's principle. The equation $\delta S = 0$ gives us Lagrange's equations, but now in terms of $\{q_1, q_2, q_3\}$. So the equations of motion in terms of any set of generalized coordinates, are

$$\frac{\partial \pounds}{\partial q_i} = \frac{d}{dt} \quad \frac{\partial \pounds}{\partial \dot{q}_i} \qquad \begin{array}{c} 3 \text{ equations;} \\ i = 1 2 3 \end{array}$$

To solve a problem using the Lagrangian method:

- 1. Define generalized coordinates.
- 2. Write T and U in terms of the g.c..
- $3. \quad \pounds = T U$
- 4. Write down Lagrange's equations.
- 5. Solve the equations.

Example 7.2 from Taylor

using Plane Polar Coordinates

z = 0

$$\mathcal{J} = T - U = \frac{1}{2}m(\dot{x}^{2} + \dot{y}^{2}) - U(x, y)$$
$$= \frac{1}{2}m(\dot{r}^{2} + r^{2}\dot{\phi}^{2}) - U(r, \phi)$$

$$\frac{The r equation}{Wr\phi^2 - \frac{\partial d}{\partial r}} = \frac{d}{dr} \left(\frac{\partial I}{\partial \dot{r}} \right)$$

$$\frac{The \phi equation}{Wr\phi^2 - \frac{\partial U}{\partial \dot{r}}} = mr'' = F_{r} + mr\phi^2$$

$$a_{r} = r'' - r\phi^2$$

$$\frac{\partial I}{\partial \dot{r}} = \frac{d}{dr} \left(\frac{\partial I}{\partial \dot{\phi}} \right) = rF_{r}$$

$$\frac{\partial U}{\partial \phi} = \frac{d}{dr} \left(mr^2 \dot{\phi} \right) = rF_{r}$$

$$\frac{\partial I}{\partial \phi} = \frac{d}{dr} \left(mr^2 \dot{\phi} \right) = rF_{r}$$

$$\frac{\partial I}{\partial \phi} = \frac{d}{dr} \left(mr^2 \dot{\phi} \right) = rF_{r}$$

Problem 7.2 from Taylor

"Write down the Lagrangian for a one-dimensional particle moving along the x axis and subject to a force F = -k x (with k positive). Find the Lagrange equation of motion and solve it."

т mmmmmx axis $\mathbf{x} = \mathbf{0} \quad \mathbf{x}$ $f_{1} = \frac{1}{2} \text{ m } \frac{\mathbf{v}^{2}}{\mathbf{v}^{2}} - \frac{1}{2} \text{ k } \mathbf{x}^{2}$ $\partial \pounds / \partial x = (d/dt) \partial \pounds / \partial x$ $-kx = (d/dt)m\dot{x} = m\dot{x}$ $\mathbf{x}^{\bullet} = -\omega^2 \mathbf{x} \Rightarrow \mathbf{x}(t) = \mathbf{A} \cos(\omega t - \delta)$ Homework Assignment 12 due in class Wednesday November 22 [61] Problem 7.2 * [62] Problem 7.3 * [63] Problem 7.8 ** [64] Problem 7.14 * [65] Problem 7.21 * [66] Problem 7.31 ** [67] Problem 7.43 *** [computer]

Use the cover sheet.