
Chapter 7. Lagrange's Equations

To solve a problem using the 
Lagrangian method:
1. Define generalized coordinates.
2. Write T and U in terms of the g.c..
3. ￡ = T − U
4. Write down Lagrange's equations.
5. Solve the equations.

Lagrange's equations are

                                                  
{ i = 1 2 3 … }
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Section 7.2.

Constrained Systems; an Example

"Constrained motion" means that the 
particle is not free to move throughout 
the space; its motion is limited by certain 
constraints.
For example,
consider the
pendulum…

The length of the rod (or string) is 
constant ( = l ) so the mass m can only 
move on a circle or arc of radius l  .

∂￡         d        ∂￡

∂qi         dt        ∂qi

――   =   ――      ――•

Hamilton's Principle ("least action") still 
applies;    ⇒   Lagrange's equations.



Example: The Plane Pendulum

x = l sin φ
y = l cos φ

 

            mgh = mg(l −y)

The generalized coordinate is φ.

￡= T − U

T = ½ m (x2 + y2) = ½ m l 2 φ2

U = m g (l − y) =  m g l ( 1 − cos φ )

￡ = ½ m l 2 φ2 − m g l ( 1 − cos φ )

Lagrange's equation, in terms of the 
generalized coordinate, φ …

We are familiar with this equation
from earlier calculations.

The solution is an "elliptic integral" ;
Taylor Problem 4.28.
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Section 7.3: Constrained Systems in General
To be general, consider a system of N 
particles:

※ labels α = {1 2 3 … N}

※ positions   rα  = { r1  r2  r3  …  rN }

※ generalized coordinates
qi = { q1  q2  q3  …  qn }     (i = 1 … n)

The number of particle coordinates is 3N 
(for a three dimensional system). The 
number of generalized coordinates is 
smaller, call it n, because of constraints.
※ ∃ necessary functional relationships
rα = rα ( q1 , … , qn ; t )  for  α = {1 2 3 … N}
qi = qi ( r1 , … , rN ; t )  for  i = { 1 2 3 … n}

Note the possible (but not always 
necessary) time-dependence of the 
relations.

[[ Side comment: Taylor won't use the terms 
scleronomous coordinates and rheonomous 
coordinates; instead he calls them "natural" and 
"nonnatural".   - - Footnote 4 on page 249. ]]

Taylor gives some examples:

◾ the plane pendulum
x,y ; N = 2
φ ; n=1

◾ the double plane pendulum
x1 , y1 , x2 , y2 ; N = 4
φ1 , φ2 ; n=2

◾ a pendulum in a railroad car with specified 
acceleration a

x , y ; N =2
φ ; n=1

with time dependent relations
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"Degrees of Freedom" 

❏ n is the number of degrees of 
freedom, i.e., the number of 
coordinates that can vary 
independently.

❏ N = the number of mass points.

❏ 3N = the number of Cartesian 
coordinates

❏ n ≤ 3N

For a rigid body, n = 6 while N = infinite.

"Holonomic systems" : n is the number of 
degrees of freedom and n is the number 
of generalized coordinates.

"Nonholonomic systems" (Taylor gives a 
rolling ball as an example)  will not be 
considered in this course.

Section 7.4.
Prove Lagrange's Equations with 

Constraints

To make it simple, consider a particle 
that is constrained to move on a 
surface.

There are two generalized coordinates,
q1and q2.

The net constraining force is Fcstr .
All other forces can be derived from a 
potential energy function, which may 
depend on time. So the force on the 
particle is

Ftotal = F + Fcstr    and   F = − ∇U(r,t) .

Let ￡ = T − U. 4
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The action integral

◾ Let r(t) = the actual path followed by the 
particle under the influence of the forces.

◾ Let R(t) = r(t) + ε(t)  where ε(t) describes a 
small variation of the path; i.e., infinitesimal;
and R obeys the constraints.

◾ The action integral for R(t) is

S = ∫
t1

t2 ￡(R, R, t) dt ;

and   S
0
 = ∫

t1
t2 ￡(r, r, t) dt = the minimum.

Now δS = S − S
0
 = ∫

t1
t2 δ￡ dt

◾   δ￡ = ￡(R, R, t) − ￡(r, r, t) 

= ½ m [ ( r + ε ) 2 − r 2 ] − [U(r + ε) − U(r)]

 = m r • ε  − ε • ∇U    +   O (ε2)

 = m d/dt (r • ε )  − m r • ε  + ε • F

                           integrates to 0 because
                           ε(t1) = 0 and ε(t2) = 0 .

 = drop  −  ε • Fcstr 

◾ δS = − ∫t1
t2 ε • Fcstr dt 

◾  The constraint force is normal to the surface; 
therefore

ε • Fcstr = (R − r ) • Fcstr = 0.

◾ Thus the action integral is stationary ,
δS = 0 , at the actual path of the particle, r(t).
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By the calculus of variations (Chapter 6)
q1(t) and q2(t) must obey the 
Euler-Lagrange equations; i.e.,

For a holonomic system,

where ￡= T − U .

•

Theorem.
The generalized coordinates obey 
Lagrange's equations.

Proof.
We just proved that Hamilton's principle
(δS = 0) holds for all variations of the path

that obey the constraints.

Any variation of the generalized 
coordinates, q1 and q2 , obeys the 
constraints.

Write S in terms of the generalized 
coordinates,

S = ∫t1
t2 ￡( q1 q2 q1 q2 ; t) dt .

Then we have δS = 0 for any variations of
q1(t) and q2(t).

6

x3

•   •



Example: Problem 7.41

◼ The Lagrangian ￡( ρ , ρ ; t)

◼ The equation of motion

◼ The equilibrium positions

◼ Stability analyses ;  consider ρ' = 0 (EQ.) ;

7

4

• ✱

✱

✱

Then  −￡ = ( mgk  − ½ mω2 ) ρ2 ;
● ρ = 0 is STABLE if (&only if)  ω2 < 2 g k
● Any ρ > 0 is a STABLE EQ. if  ω2 = 2 g k ."the centrifugal potential"

BEAD ON A STIFF 
SPINNING WIRE



The trajectory of a particle moving in a 
potential obeys Lagrange's equations.
For any set of generalized coordinates,

To solve a problem using the 
Lagrangian method:
1. Define generalized coordinates.
2. Write T and U in terms of the g.c..
3. ￡ = T − U
4. Derive Lagrange's equations.
5. Solve the equations.

Homework Assignment 12
due in class Wednesday November 22
[61] Problem 7.2 *
[62] Problem 7.3 *
[63] Problem 7.8 **
[64] Problem 7.14 *
[65] Problem 7.21 *
[66] Problem 7.31 **
[67] Problem 7.43 *** [computer]

USE THE COVER SHEET.
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∂￡         d         ∂￡

∂qi         dt        ∂qi

――   =   ――      ――• n equations;
i = 1 2 3 … n
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