Chapter 7. Lagrange's Equations

To solve a problem using the Lagrangian method:

- 1. Define generalized coordinates.
- 2. Write T and U in terms of the g.c..
- 3. $\pounds = T U$
- 4. Write down Lagrange's equations.
- 5. Solve the equations.

Lagrange's equations are

$$\frac{\partial \mathbf{\pounds}}{\partial \mathbf{q}_{i}} = \frac{\mathrm{d}}{\mathrm{dt}} \quad \frac{\partial \mathbf{\pounds}}{\partial \mathbf{q}_{i}} \qquad \{i = 1 \ 2 \ 3 \ \dots \}$$

<u>Section 7.2.</u>

Constrained Systems; an Example

"Constrained motion" means that the particle is not free to move throughout the space; its motion is limited by certain

constraints. For example, consider the pendulum...

The length of the rod (or string) is constant (= l) so the mass m can only move on a circle or arc of radius l .

Hamilton's Principle ("least action") still applies; \Rightarrow Lagrange's equations.

U = m g
$$(l - y)$$
 = m g l $(1 - \cos φ)$

 $\pounds = \frac{1}{2} m l^2 \dot{\phi}^2 - m g l (1 - \cos \phi)$

Lagrange's equation, in terms of the generalized coordinate, $\phi \ \ldots$

$$\frac{\partial \mathcal{L}}{\partial \psi} = \frac{d}{dt} \left(\frac{\partial I}{\partial \phi} \right)$$

- mgl sin $\phi = \frac{d}{dt} \left(ml^2 \phi \right) = ml^2 \phi''$
 $\dot{\psi} = -\frac{1}{\ell} \sin \phi$

We are familiar with this equation from earlier calculations.

The solution is an "elliptic integral" ; Taylor Problem 4.28. Section 7.3: Constrained Systems in General To be general, consider a system of N particles:

- **X** labels $\alpha = \{1 \ 2 \ 3 \ \dots \ N\}$
- $\bigotimes \text{ positions } \mathbf{r}_{\alpha} = \{ \mathbf{r}_1 \ \mathbf{r}_2 \ \mathbf{r}_3 \ \dots \ \mathbf{r}_N \}$

💥 generalized coordinates

 $\mathbf{q}_{i} = \{ \mathbf{q}_{1} \ \mathbf{q}_{2} \ \mathbf{q}_{3} \ \dots \ \mathbf{q}_{n} \} \quad (i = 1 \ \dots \ n)$

The number of particle coordinates is 3N (for a three dimensional system). The number of generalized coordinates is smaller, call it n, because of constraints. $\aleph \equiv$ necessary functional relationships $\mathbf{r}_{a} = \mathbf{r}_{a} (q_{1}, \dots, q_{n}; t)$ for $\alpha = \{1 \ 2 \ 3 \dots N\}$ $q_{i} = q_{i} (\mathbf{r}_{1}, \dots, \mathbf{r}_{N}; t)$ for $i = \{1 \ 2 \ 3 \dots n\}$

Note the possible (but not always necessary) time-dependence of the relations.

[[Side comment: Taylor won't use the terms *scleronomous* coordinates and *rheonomous* coordinates; instead he calls them "natural" and "nonnatural". -- Footnote 4 on page 249.]]

Taylor gives some examples:

the plane pendulum
 x,y; N = 2
 φ; n=1

• the double plane pendulum \sim $x_1, y_1, x_2, y_2; N = 4$ $\phi_1, \phi_2; n=2$

a pendulum in a railroad car with specified acceleration a

x , y ; N =2 φ ; n=1 with *time dependent* relations

"Degrees of Freedom"

- n is the number of degrees of freedom, i.e., the number of coordinates that can vary independently.
- \Box N = the number of mass points.
- 3N = the number of Cartesian coordinates
- $\Box \quad n \leq 3N$

For a *rigid body*, n = 6 while N = infinite.

"Holonomic systems" : n is the number of degrees of freedom *and* n is the number of generalized coordinates.

"Nonholonomic systems" (Taylor gives a rolling ball as an example) will not be considered in this course.

<u>Section 7.4.</u> Prove Lagrange's Equations with Constraints

To make it simple, consider a particle that is constrained to move on a surface.

There are two generalized coordinates, $\mathbf{q}_1 \mathbf{and} \ \mathbf{q}_2.$

The net constraining force is \mathbf{F}_{cstr} . All other forces can be derived from a potential energy function, which may depend on time. So the force on the particle is

$$\mathbf{F}_{\text{total}} = \mathbf{F} + \mathbf{F}_{\text{cstr}}$$
 and $\mathbf{F} = -\nabla U(\mathbf{r}, t)$.

Let $\pounds = T - U$.

The action integral

- Let r(t) = the actual path followed by the particle under the influence of the forces.
- Let $\mathbf{R}(t) = \mathbf{r}(t) + \varepsilon(t)$ where $\varepsilon(t)$ describes a small variation of the path; i.e., infinitesimal; <u>and</u> \mathbf{R} obeys the constraints.
- The action integral for **R**(t) is

 $S = \int_{t1}^{t2} \mathbf{\pounds} (\mathbf{R}, \mathbf{R}, t) dt;$

and $S_0 = \int_{t1}^{t2} \mathbf{\pounds} (\mathbf{r}, \mathbf{\dot{r}}, t) dt = the minimum.$

Now $\delta S = S - S_0 = \int_{t_1}^{t_2} \delta \mathbf{\pounds} dt$

•
$$\delta \pounds = \pounds (\mathbf{R}, \mathbf{R}, \mathbf{t}) - \pounds (\mathbf{r}, \mathbf{r}, \mathbf{t})$$

=
$$\frac{1}{2}$$
 m [($\dot{\mathbf{r}} + \dot{\boldsymbol{\epsilon}}$)² - $\dot{\mathbf{r}}^{2}$] - [U($\mathbf{r} + \boldsymbol{\epsilon}$) - U(\mathbf{r})]

$$= \mathbf{m} \, \mathbf{\dot{r}} \cdot \mathbf{\dot{\epsilon}} - \mathbf{\epsilon} \cdot \nabla \mathbf{U} + \mathbf{O} (\mathbf{\epsilon}^{2})$$

$$= \mathbf{m} \, \mathbf{d}/\mathbf{dt} \, (\mathbf{\ddot{r}} \cdot \mathbf{\epsilon}) - \mathbf{m} \, \mathbf{\ddot{r}} \cdot \mathbf{\epsilon} + \mathbf{\epsilon} \cdot \mathbf{F}$$
integrates to 0 because
$$\mathbf{\epsilon}(\mathbf{t}_{1}) = \mathbf{0} \text{ and } \mathbf{\epsilon}(\mathbf{t}_{2}) = \mathbf{0}.$$

$$= \mathbf{drop} - \mathbf{\epsilon} \cdot \mathbf{F}_{cstr}$$

$$\delta \mathbf{S} = -\int_{t1}^{t2} \mathbf{\epsilon} \cdot \mathbf{F}_{cstr} \, dt$$

• *The constraint force is normal to the surface*; therefore

$$\epsilon \cdot \mathbf{F}_{cstr} = (\mathbf{R} - \mathbf{r}) \cdot \mathbf{F}_{cstr} = \mathbf{0}.$$

• Thus the action integral is stationary, $\delta S = 0$, at the actual path of the particle, **r**(t).

Theorem.

The generalized coordinates obey Lagrange's equations.

<u>Proof.</u>

We just proved that Hamilton's principle ($\delta S = 0$) holds for all variations of the path *that obey the constraints.*

Any variation of the generalized coordinates, q_1 and q_2 , obeys the constraints.

Write S in terms of the generalized coordinates,

S = $\int_{t1}^{t2} \mathbf{\pounds} (\mathbf{q}_1 \mathbf{q}_2 \mathbf{q}_1 \mathbf{q}_2; t) dt$.

Then we have $\delta S = 0$ for any variations of $q_1(t)$ and $q_2(t)$.

By the calculus of variations (Chapter 6) $q_1(t)$ and $q_2(t)$ must obey the Euler-Lagrange equations; i.e.,

$$\frac{\partial \mathcal{L}}{\partial q_1} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q_1}} \right) \quad AND \quad \frac{\partial \mathcal{L}}{\partial q_2} = \frac{d}{dt} \left(\frac{\partial \partial}{\partial q_1} \right)$$

For a holonomic system,

$$\frac{\partial \mathcal{L}}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q_i}} \right) \quad \text{for} \quad z' = 1 \ 2 \ 3 \dots \ n$$

where $\pounds = T - U$.

6

Example: Problem 7.41

BEAD ON A STIFF SPINNING WIRE

ζω/	BEAD ON A FRICTIONLESS WIRE Cylindricul coordinatus of m (β, φ, Ζ)
m	Constraints on m
	$Z = K p^2$
- · · · · · · · · · · · · · · · · · · ·	$\phi = \omega t$

• The Lagrangian $\pounds (\rho, \dot{\rho}; t)$

 $T = \frac{1}{2}m(\dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2}) \quad \text{where} \quad \chi = \rho \cos \phi = \rho \cos \omega t$ $T = \frac{1}{2}m[\dot{p}^{2} + \rho^{2}\omega^{2} + (\mathbf{a}k\rho\dot{p})^{2}] \quad \overline{Z} = \rho \sin \phi = \rho \sin \omega t$ $U = Mg Z = mg k \rho^{2}$ $\mathcal{J} = \frac{1}{2}m(\dot{p}^{2} + g^{2}\omega^{2} + 4k^{2}\rho^{2}\rho^{2}) - Mg k \rho^{2}$

"the centrifugal potential"

The equation of motion $\frac{\partial Z}{\partial r} = \frac{1}{dt} \left(\frac{\partial Z}{\partial s} \right)$ $(|+ 4k^{2}p^{2}) + 4k^{2}pp^{2}$ $-(\omega^2-2gk)g=0$ The equilibrium positions * p=0 and p =0 * s=0 is an equilibrium point * Also, if w = 2gk then any p is an equilibrium point. • Stability analyses ; consider $\rho' = 0$ (EQ.) ; -**£** = (mgk $-\frac{1}{2}$ m ω^2) ρ^2 ; Then • $\rho = 0$ is STABLE if (*&only if*) $\omega^2 < 2$ g k Any $\rho > 0$ is a STABLE EQ. if $\omega^2 = 2 \text{ g k}$. •

The trajectory of a particle moving in a potential obeys Lagrange's equations. For any set of generalized coordinates,

n equations; i = 1 2 3 ... n

To solve a problem using the Lagrangian method:

- 1. Define generalized coordinates.
- 2. Write T and U in terms of the g.c..
- 3. $\pounds = T U$
- 4. Derive Lagrange's equations.
- 5. Solve the equations.

Homework Assignment 12 due in class Wednesday November 22 [61] Problem 7.2 * [62] Problem 7.3 * [63] Problem 7.8 ** [64] Problem 7.14 * [65] Problem 7.21 * [66] Problem 7.31 ** [67] Problem 7.43 *** [computer]

USE THE COVER SHEET.