Chapter 7. Lagrange's Equations
To solve a problem using the Lagrangian method:

1. Define generalized coordinates.
2. Write T and U in terms of the g.c..
3. $£=\mathrm{T}-\mathrm{U}$
4. Write down Lagrange's equations.
5. Solve the equations.

Lagrange's equations are

$$
\frac{\partial \boldsymbol{£}}{\partial \mathbf{q}_{\mathrm{i}}}=\frac{\mathrm{d}}{\mathrm{dt}} \quad \frac{\partial £}{\partial \dot{\mathbf{q}}_{\mathrm{i}}} \quad\{\mathrm{i}=123 \ldots\}
$$

Section 7.2.
Constrained Systems; an Example
"Constrained motion" means that the particle is not free to move throughout the space; its motion is limited by certain constraints.
For example, consider the pendulum...

The length of the rod (or string) is constant ($=l$) so the mass m can only move on a circle or arc of radius l.

> Hamilton's Principle ("least action") still applies; \Rightarrow Lagrange's equations.

Example: The Plane Pendulum

The generalized coordinate is φ.

$$
\mathfrak{£}=\mathrm{T}-\mathrm{U}
$$

$\mathrm{T}=1 / 2 \mathrm{~m}\left(\dot{\mathrm{x}}^{2}+\dot{\mathrm{y}}^{2}\right)=1 / 2 \mathrm{~m} l^{2} \dot{\varphi}^{2}$
$\mathrm{U}=\mathrm{mg}(l-\mathrm{y})=\mathrm{mg} l(1-\cos \varphi)$

$$
\mathcal{£}=1 / 2 \mathrm{~m} l^{2} \dot{\varphi}^{2}-\mathrm{mg} l(1-\cos \varphi)
$$

Lagrange's equation, in terms of the generalized coordinate, $\varphi \ldots$

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial \phi}=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \\
&-m g l \sin \phi=\frac{d}{d t}\left(m l^{2} \dot{\phi}\right)=m l^{2} \ddot{\phi} \\
& \ddot{\phi}=-\frac{g}{l} \sin \phi
\end{aligned}
$$

We are familiar with this equation from earlier calculations.

The solution is an "elliptic integral" ; Taylor Problem 4.28.

Section 7.3: Constrained Systems in General To be general, consider a system of N particles:
※ labels $\quad \alpha=\{123 \ldots \mathrm{~N}\}$
$※$ positions $\quad \mathbf{r}_{\boldsymbol{\alpha}}=\left\{\begin{array}{lllll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \ldots & \mathbf{r}_{\mathrm{N}}\end{array}\right\}$
※ generalized coordinates

$$
\mathrm{q}_{\mathrm{i}}=\left\{\begin{array}{llllll}
\mathrm{q}_{1} & \mathrm{q}_{2} & \mathrm{q}_{3} & \ldots & \mathrm{q}_{\mathrm{n}}
\end{array}\right\} \quad(\mathrm{i}=1 \ldots \mathrm{n})
$$

The number of particle coordinates is 3 N (for a three dimensional system). The number of generalized coordinates is smaller, call it n, because of constraints.
$※ \exists$ necessary functional relationships $\mathbf{r}_{\alpha}=\mathbf{r}_{\alpha}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}} ; \mathrm{t}\right)$ for $\alpha=\{123 \ldots \mathrm{~N}\}$ $q_{i}=q_{i}\left(\mathbf{r}_{1}, \ldots, r_{N} ; t\right)$ for $i=\{123 \ldots n\}$

Note the possible (but not always necessary) time-dependence of the relations.
[S Side comment: Taylor won't use the terms scleronomous coordinates and rheonomous coordinates; instead he calls them "natural" and "nonnatural". - - Footnote 4 on page 249.]]

Taylor gives some examples:

- the plane pendulum

$$
\begin{aligned}
& x, y ; N=2 \\
& \varphi ; n=1
\end{aligned}
$$

- the double plane pendulum $\xrightarrow[\text { il }]{\text { il }} \times$

$$
\begin{aligned}
& \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2} ; \mathrm{N}=4 \\
& \varphi_{1}, \varphi_{2} ; \mathrm{n}=2
\end{aligned}
$$

- a pendulum in a railroad car with specified acceleration a

$$
\begin{aligned}
& \mathrm{x}, \mathrm{y} ; \mathrm{N}=2 \\
& \varphi ; \mathrm{n}=1
\end{aligned}
$$

with time dependent relations

"Degrees of Freedom"

- $\quad \mathrm{n}$ is the number of degrees of freedom, i.e., the number of coordinates that can vary independently.
- $\mathrm{N}=$ the number of mass points.
- $3 \mathrm{~N}=$ the number of Cartesian coordinates
- $\mathrm{n} \leq 3 \mathrm{~N}$

For a rigid body, $\mathrm{n}=6$ while $\mathrm{N}=$ infinite. "Holonomic systems" : n is the number of degrees of freedom and n is the number of generalized coordinates.
"Nonholonomic systems" (Taylor gives a rolling ball as an example) will not be considered in this course.

Section 7.4.
Prove Lagrange's Equations with Constraints

To make it simple, consider a particle that is constrained to move on a surface.

There are two generalized coordinates, q_{1} and q_{2}.

The net constraining force is $\mathbf{F}_{\text {cstr }}$. All other forces can be derived from a potential energy function, which may depend on time. So the force on the particle is

$$
\mathbf{F}_{\text {total }}=\mathbf{F}+\mathbf{F}_{\mathrm{cstr}} \quad \text { and } \quad \mathbf{F}=-\nabla \mathrm{U}(\mathbf{r}, \mathrm{t}) .
$$

Let $£=\mathrm{T}-\mathrm{U}$.

The action integral

- Let $\mathbf{r}(\mathrm{t})=$ the actual path followed by the particle under the influence of the forces.
- Let $\mathbf{R}(\mathrm{t})=\mathbf{r}(\mathrm{t})+\boldsymbol{\varepsilon}(\mathrm{t})$ where $\boldsymbol{\varepsilon}(\mathrm{t})$ describes a small variation of the path; i.e., infinitesimal; and \mathbf{R} obeys the constraints.
- The action integral for $\mathbf{R}(\mathrm{t})$ is

$$
\mathrm{S}=\int_{\mathrm{t} 1}^{\mathrm{t} 2} £(\mathbf{R}, \dot{\mathbf{R}}, \mathrm{t}) \mathrm{dt} ;
$$

and $\mathrm{S}_{0}=\int_{\mathrm{t} 1}^{\mathrm{t} 2} £(\mathbf{r}, \dot{\mathbf{r}}, \mathrm{t}) \mathrm{dt}=$ the minimum.
Now $\delta S=S-S_{0}=\int_{\mathrm{t} 1}{ }^{\mathrm{t} 2} \delta £ \mathrm{dt}$

- $\delta £=£(\mathbf{R}, \mathbf{R}, \mathbf{t})-£(\mathbf{r}, \mathbf{r}, \mathrm{t})$
$=1 / 2 m\left[(\dot{\mathbf{r}}+\dot{\boldsymbol{\varepsilon}})^{2}-\dot{\mathbf{r}}^{2}\right]-[\mathrm{U}(\mathbf{r}+\boldsymbol{\varepsilon})-\mathrm{U}(\mathbf{r})]$

$$
\begin{aligned}
& =\mathrm{m} \dot{\mathbf{r}} \cdot \dot{\boldsymbol{\varepsilon}}-\boldsymbol{\varepsilon} \cdot \nabla \mathrm{U}+\mathrm{O}\left(\boldsymbol{\varepsilon}^{\mathbf{2}}\right) \\
& =\underbrace{\mathrm{md} / \mathrm{dt}(\dot{\mathbf{r}} \cdot \boldsymbol{\varepsilon})-\mathrm{m} \ddot{\mathbf{r}} \cdot \boldsymbol{\varepsilon}+\boldsymbol{\varepsilon} \cdot \mathbf{F}}_{\underbrace{}_{\text {integrates to } 0} 0 \text { because }}=0 \text { and } \boldsymbol{\varepsilon}\left(\mathrm{t}_{2}\right)=0 \text {. } \\
& =\operatorname{drop}-\boldsymbol{\varepsilon} \cdot \mathbf{F}_{\mathrm{cstr}} \\
& \quad \delta \mathrm{~S}=-\int_{\mathrm{t} 1}^{\mathrm{t} 2} \boldsymbol{\varepsilon} \cdot \mathbf{F}_{\mathrm{cstr}} \mathrm{dt}
\end{aligned}
$$

- The constraint force is normal to the surface; therefore

$$
\varepsilon \cdot \mathrm{F}_{\mathrm{cstr}}=(\mathrm{R}-\mathbf{r}) \cdot \mathrm{F}_{\mathrm{cstr}}=0
$$

- Thus the action integral is stationary, $\delta S=0$, at the actual path of the particle, $r(t)$.

Theorem.
The generalized coordinates obey Lagrange's equations.
Proof.
We just proved that Hamilton's principle $(\delta S=0)$ holds for all variations of the path that obey the constraints.

Any variation of the generalized coordinates, q_{1} and q_{2}, obeys the constraints.

Write S in terms of the generalized coordinates,

$$
\mathrm{S}=\int_{\mathrm{t} 1} \mathrm{t} 2 £\left(\mathrm{q}_{1} \mathrm{q}_{2} \dot{\mathrm{q}}_{1} \dot{\mathrm{q}}_{2} ; \mathrm{t}\right) \mathrm{dt} .
$$

Then we have $\delta S=0$ for any variations of $\mathrm{q}_{1}(\mathrm{t})$ and $\mathrm{q}_{2}(\mathrm{t})$.

By the calculus of variations (Chapter 6) $\mathrm{q}_{1}(\mathrm{t})$ and $\mathrm{q}_{2}(\mathrm{t})$ must obey the Euler-Lagrange equations; i.e.,

$$
\frac{\partial \mathscr{L}}{\partial q_{1}}=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial q_{1}}\right) \quad \text { AND } \quad \frac{\partial \mathscr{L}}{\partial q_{2}}=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial q_{2}}\right)
$$

For a holonomic system,

$$
\frac{\partial \mathcal{L}}{\partial q_{i}}=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \text { for } i=123 \ldots n
$$

where $£=T-U$.
Example: Problem 7 BEAD ON A FRICTIONLESS WIRE Cylindrical coosinatis of m (ρ, ϕ, z)
Constraints on m
$z=k \rho^{2}$
$\phi=\omega t$

- The Lagrangian $£(\rho, \dot{\rho} ; \mathrm{t})$

$$
\begin{aligned}
& T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right) \text { where } x=\rho \cos \phi=\rho \cos \omega t \\
& T=\frac{1}{2} m\left[\dot{\rho}^{2}+\rho^{2} \omega^{2}+(2 k \rho \dot{\rho})^{2}\right] z=\rho \sin \phi=\rho \sin \omega t \\
& U=m g z=m g k \rho^{2} \\
& \mathcal{L}=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \omega^{2}+4 k^{2} \rho^{2} \dot{\rho}^{2}\right)-m g k \rho^{2}
\end{aligned}
$$

"the centrifugal potential"

The equation of motion

$$
\frac{\partial \mathcal{Z}}{\partial \rho}=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \rho}\right)
$$

$$
\begin{aligned}
\left(1+4 k^{2} \rho^{2}\right) \ddot{\rho}+ & 4 k^{2} \rho \dot{\rho}^{2} \\
& -\left(\omega^{2}-2 g k\right) \rho=0
\end{aligned}
$$

The equilibrium positions

* $\dot{\rho}=0$ and $\rho^{\prime \prime}=0$
* $\rho=0$ b' an equilibrium point
* Also, $\rho \omega^{2}=2 g k$ then any ρ is an equilibrium point.
Stability analyses; consider $\rho^{\prime}=0$ (EQ.); Then \quad - \& $=\left(m g k-1 / 2 m \omega^{2}\right) \rho^{2}$;
- $\rho=0$ is STABLE if (\&only if) $\omega^{2}<2 \mathrm{gk}$
- Any $\rho>0$ is a STABLE EQ. if $\omega^{2}=2 \mathrm{gk}$.

The trajectory of a particle moving in a potential obeys Lagrange's equations. For any set of generalized coordinates,

$$
\frac{\partial £}{\partial \mathrm{q}_{\mathrm{i}}}=\frac{\mathrm{d}}{\mathrm{dt}}-\frac{\partial £}{\partial \dot{\mathrm{q}_{i}}}
$$

n equations;

$$
i=123 \ldots n
$$

Homework Assignment 12
due in class Wednesday November 22
[61] Problem 7.2 *
[62] Problem 7.3*
[63] Problem $7.8^{* *}$
[64] Problem 7.14 *
[65] Problem 7.21*
[66] Problem $7.31^{* *}$
[67] Problem $7.43^{* * *}$ [computer]
USE THE COVER SHEET.

To solve a problem using the Lagrangian method:

1. Define generalized coordinates.
2. Write T and U in terms of the g.c..
3. $£=\mathrm{T}-\mathrm{U}$
4. Derive Lagrange's equations.
5. Solve the equations.
