Chapter 7.  Lagrange's Equations Section 7.2.
Constrained Systems; an Example

To solve a problem using the

: _ "Constrained motion" means that the
Lagrangian method:

particle is not free to move throughout

1. Define generalized coordinates. the space; its motion is limited by certain
2. Write T and U in terms of the g.c.. pace, y
- constraints.
. &£=1-U For example
4. Write down Lagrange's equations. : PIe, —
: consider the
5. Solve the equations.
pendulum... q

Lagrange's equations are -~

0L d 0L . The length of the rod (or string) is

. . t=123..3 constant ( = 1) so the mass m can onl

oq; dt oq; y

move on a circle or arc of radius [ .

Hamilton's Principle ("least action") still
applies; = Lagrange's equations.




Example: The Plane Pendulum

X=1sin ¢
y=1cos ¢

ngh = mg(—y)

by

The generalized coordinate is ¢.
£=T-U
T=%m&2+y?)=%ml?q

U=mg(-y)=mgl(1l-cose)

£=%ml?¢*-mgl(1-coso)

Lagrange's equation, in terms of the
generalized coordinate, ¢ ...

AL _ d /3L
2¢  Jt\ 3

— ”gl 5!h+ :vjz ('m12;) = ’)pf_,l’#

¢ = ---g—gmf

We are familiar with this equation
from earlier calculations.

The solution is an "elliptic integral” ;
Taylor Problem 4.28.




Section 7.3: Constrained Systems in General

To be general, consider a system of N
particles:

2% labels a={123...N}
X positions r_ ={r, r, r, ... ry}
¢ generalized coordinates
q=-{9, 9, 9; ... q,} (@(=1..n)

The number of particle coordinates is 3N
(for a three dimensional system). The
number of generalized coordinates is
smaller, call it n, because of constraints.
»¢ 3 necessary functional relationships

r =r (q,,..,q,;t) for a«={123... N}
q=9q,(r,..,rg;t) fori={123...n}

Note the possible (but not always
necessary) time-dependence of the
relations

[[ Side comment: Taylor won't use the terms
scleronomous coordinates and rheonomous
coordinates; instead he calls them "natural” and
"nonnatural”. --Footnote 4 on page 249. ]]

A,
Y
)/ m

Taylor gives some examples:

= the plane pendulum
Xy;N=2
¢;n=1

= the double plane pendulum
X,¥,,%,y,;N=4
0y ¢, ; N=2

® 3 pendulum in a railroad car with specified
acceleration a
X,Y;N:2 FY ad ;’;(g"wn)
(P ; n:l Y ‘.15 m
V]
3

with time dependent relations




"Degrees of Freedom"

[ nisthe number of degrees of
freedom, i.e., the number of
coordinates that can vary
independently.

[ N =the number of mass points.

d 3N =the number of Cartesian
coordinates

d n<3N
For a rigid body, n = 6 while N = infinite.

"Holonomic systems" : n is the number of
degrees of freedom and n is the number
of generalized coordinates.

"Nonholonomic systems" (Taylor gives a
rolling ball as an example) will not be
considered in this course.

Section 7.4.
Prove Lagrange's Equations with
Constraints

To make it simple, consider a particle
that is constrained to move on a
surface.

There are two generalized coordinates,
q,and q,.

The net constraining forceis F__ .

All other forces can be derived from a
potential energy function, which may
depend on time. So the force on the
particle is

F =F+F and F=-VU(,t).

total cstr

Let £ =T-U.




The action integral

m Let r(t) = the actual path followed by the
particle under the influence of the forces.

m Let R(t) =r(t) + €(t) where g(t) describes a
small variation of the path; i.e., infinitesimal;
and R obeys the constraints.

m The action integral for R(t) is
S=] % £(R R t)dt;

and S = | L E(r, r, t) dt = the minimum.
Now 3S=S~-S,=] ?3& dt

= 3£ =L£RR-L£(rT 1)
=m[(r+&)%-r?]-[U(r+¢)—U()]

—mreg —g+ VU + O(s?)

=md/dt(reg) —mreg +g*F
—
\ integrates to 0 because
g(t,) =0and g(t,) =0 .
=drop — €°*F

cstr

. 68=—ft1t28°F dt

cstr

m The constraint force is normal to the surface;
therefore

g*F _=R-r)F

cstr

= 0.

cstr

m Thus the action integral is stationary ,
0S =0, at the actual path of the particle, r(t).




Theorem.
The generalized coordinates obey
Lagrange's equations.

Proof.

We just proved that Hamilton's principle

(8S = 0) holds for all variations of the path
that obey the constraints.

Any variation of the generalized
coordinates, q, and q, , obeys the
constraints.

Write S in terms of the generalized
coordinates,

s=1," £(q qz(il (.lz;t) dt.

Then we have 6S = 0 for any variations of
q,(t) and q,(1).

By the calculus of variations (Chapter 6)
q,(t) and g,(t) must obey the
Euler-Lagrange equations; i.e.,

%—;:A(%) AND

Rt 5

For a holonomic system,

_9_59_4(3}_ '
921:—;—; 9@) ﬁ\’ Z-IZZ-...-')'L

where £=T-U.




Example: Problem 7.41 BEAD ON A STIFF

SPINNING WIRE

BEAD on A FRICTIONLESS WIRE

Cylmdned cowdindls of m

v (g @ =)
n Omstrasts on m

- z = ke

s ¢=wt

m The Lagrangian £(p,p;t)

T -‘—'51”\ ()}7-4..?7- {-é“-) [J,ere, ?.’:féosgls :Joa,“.,t
T = dnf(§ ¢ g fasgp)] EL AT 0t
U = My z = ’Mj_kf""

L = ;’m( P F P+ ‘H(Zfz)éz - Mdfikfz

"the centrifugal potential”

m The equation of motion 3 4797
S =35

(rHy g + $Cpp"

2
— (&) —_ Qg k)f =
m The equilibrium positions

*5'7=a ww(f:o

¥ P=o b am ?":/"4"'“% point
w Mo, f 5= 29k Hen any p =
an %fbn’kn po it
m Stability analyses ; consider p'=0 (EQ.) ;
Then -8 =(mgk - %amw?)p?;

e p=0is STABLE if (&only if) w?<2gk
e Anyp>0isaSTABLEEQ.if w?=2gk.




The trajectory of a particle moving in a
potential obeys Lagrange's equations.
For any set of generalized coordinates,

0L d 0L

= . n equations;
oq; dt g i=123...n

To solve a problem using the
Lagrangian method:

Define generalized coordinates.
Write T and U in terms of the g.c..
£=T-U

Derive Lagrange's equations.
Solve the equations.

U N -

Homework Assignment 12

due in class Wednesday November 22
[61] Problem 7.2 *

[62] Problem 7.3 *

[63] Problem 7.8 **

[64] Problem 7.14 *

[65] Problem 7.21 *

[66] Problem 7.31 **

[67] Problem 7.43 *** [computer]

USE THE COVER SHEET.




