"Chapter 8 : Two body central force problems"

Preliminary: Some tricks of the trade in Lagrangian mechanics

7.6 Generalized Momenta and Ignorable Coordinates

As I have already mentioned, for any system with n generalized coordinates q_{i} ($i=1, \cdots, n$), we refer to the n quantities $\partial \mathcal{L} / \partial q_{i}=F_{i}$ as generalized forces and $\partial \mathcal{L} / \partial \dot{q}_{i}=p_{i}$ as generalized momenta. With this terminology, the Lagrange equation,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial q_{i}}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} . \tag{7.81}
\end{equation*}
$$

can be rewritten as

$$
\begin{equation*}
F_{i}=\frac{d}{d t} p_{i-} \tag{7.82}
\end{equation*}
$$

7.6 Generalized Momenta and Ignorable Coordinates

As I have already mentioned, for any system with n generalized coordinates q_{i} $(i=1, \cdots, n)$, we refer to the n quantities $\partial \mathcal{L} / \partial q_{i}=F_{i}$ as generalized forces and $\partial \mathcal{L} / \partial \dot{q}_{i}=p_{i}$ as generalized momenta. With this terminology, the Lagrange equation,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial q_{i}}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \tag{7.81}
\end{equation*}
$$

Theorem.
If q_{i} is an ignorable coordinate, then p_{i} is a constant of the motion.
can be rewritten as

$$
F_{i}=\frac{d}{d t} p_{i-}
$$

portant result (and one that is clear from the Newtonian perspective as/well). When the Lagrangian is independent of a coordinate q_{i}, that coordinate is spmetimes said to be ignorable or cyclic. Obviously it is a good idea, when possible, to choose coordinates so that as many as possible are ignorable and their corresponding momenta are constant. In fact, this is perhaps the main criterion in choosing generalized coor-

invariant, when q_{i} varies (with all the other q_{i} held fixed)." Thus we can say that if
\mathcal{L} is invariant under variations of a coordinate q_{i} then the corresponding generalized
momentum p_{i} is conserved. This connection between invariance of \mathcal{L} and certain

7.7 Conclusion

The Lagrangian version of classical mechanics has the two great advantages that, unlike the Newtonian version, it works equally well in all coordinate systems and it can handle constrained systems easily, avoiding any need to discuss the forces of constraint. If the system is constrained, one must choose a suitable set of independent generalized coordinates. Whether or not there are constraints, the next task is to write down the Lagrangian \mathcal{L} in terms of the chosen coordinates. The equations of motion then follow automatically in the standard form

$$
\frac{\partial \mathcal{L}}{\partial q_{i}}=\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \quad[i=1, \cdots, n]
$$

There is, of course, no guarantee that the resulting equations will be easy to solve, and in most real problems they are not, requiring numerical solution or ar least some approximations before they can be solved analytically.

Chapter 8.

Two-body Central Force Problems
Section 8.1.
The Problem
Section 8.2.
CM and Relative Coordinates
Read Sections 8.1 and 8.2.

8.1. The Problem

FIGURE 8.1

The particles (1 and 2) exert forces on each other, and there are no external forces.

The potential energy is $U(|\mathbf{r}|)$ where $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$;
the forces are central and spherically symmetric ; $r=|\mathbf{r}| ; \quad \mathrm{U}=\mathrm{U}(r)$

Astronomical

 examples

The potential energy is

$$
\mathrm{U}(\mathrm{r})=-\mathrm{G} \mathrm{~m}_{1} \mathrm{~m}_{2} / \mathrm{r} .
$$

Comments:

- The orbits are not circular in general.
- Sun and Earth, or another planet; $m_{2} \gg m_{1}$
- Earth and Moon, or a satellite; $m_{2} \gg m_{1}$
- Binary Star; m_{2} and m_{1} are comparable.

Atomic

examples
The hydrogen atom
proton

$$
\mathrm{U}(\mathrm{r})=-\mathrm{k} \mathrm{e}^{2} / \mathrm{r}
$$

Diatomic molecule

$$
\text { e.g., } \mathrm{O}_{2}
$$

$$
\mathrm{U}(\mathrm{r})=\mathrm{A}_{1} / \mathrm{r}^{12}-\mathrm{A}_{2} / \mathrm{r}^{6}
$$

Strictly, these examples require quantum mechanics; but sometimes semi-classical calculations are interesting.

Notes:

- If $m_{2} \gg \mathrm{~m}_{1}$ then $\mathbf{R} \approx \mathbf{r}_{2}$.
- $\quad \mathbf{r}_{1}=\mathbf{R}+\left(\mathrm{m}_{2} / \mathrm{M}\right) \mathbf{r}$ and $\mathbf{r}_{2}=\mathbf{R}-\left(\mathrm{m}_{1} / \mathrm{M}\right) \mathbf{r}$

Verify:

$$
\begin{aligned}
& m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}=\left(m_{1}+m_{2}\right) \boldsymbol{R} \boldsymbol{\sim} \\
& \boldsymbol{r}_{1}-\boldsymbol{r}_{2}=\boldsymbol{r} \\
& \boldsymbol{v}
\end{aligned}
$$

- The kinetic energy is

$$
\begin{aligned}
& \mathrm{T}=1 / 2 \mathrm{~m}_{1} \dot{\mathbf{r}}_{1}{ }^{2}+1 / 2 \mathrm{~m}_{2} \dot{\mathbf{r}}_{2}{ }^{2} \\
&=1 / 2 \mathrm{M} \dot{\mathbf{R}}^{2}+1 / 2 \mu \dot{\mathbf{r}}^{2}
\end{aligned}
$$

where

$$
\begin{gathered}
\mu=m_{1}\left(m_{2} / M\right)^{2}+m_{2}\left(m_{1} / M\right)^{2} \\
=m_{1} m_{2} / M
\end{gathered}
$$

- The reduced mass

$$
\begin{aligned}
& \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
& \text { or, } \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}
\end{aligned}
$$

Notes

- μ is smaller than either m_{1} or m_{2}
- if $\mathrm{m}_{1} \ll \mathrm{~m}_{2}$ then $\mu \approx \mathrm{m}_{1}$; sim. $m_{2} \ll m_{1}$
- if $\mathrm{m}_{1}=\mathrm{m}_{2}$ then $\mu=\mathrm{m}_{1} / 2$.
- The Lagrangian $£=\mathrm{T}-\mathrm{U}$

$$
\begin{aligned}
\mathcal{L} & =T-U \\
& =\frac{1}{2} M \overrightarrow{\vec{R}^{2}}+\frac{1}{2} \mu \overrightarrow{r^{2}}-V(r)
\end{aligned}
$$

(CM)
\leftarrow (relative) \rightarrow
So, the two-body problem reduces to

- the center of mass motion (R), which is trivial; $\quad \mathbf{R}(\mathrm{t})=\mathbf{V}_{\mathrm{CM}} \mathrm{t}$ and
- the relative motion (r), which is equivalent to a one-body problem, with reduced mass μ and potential energy U(r).

Then what are r_{1} and r_{2} ?

The Equations of Motion
Generalized coordinates: $\mathbf{R}=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ and $\mathbf{r}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
The Lagrangian is

$$
\mathcal{L}=\frac{1}{2} M \dot{\vec{R}}^{2}+\frac{1}{2} \mu \dot{\vec{r}}^{2}-U(r)
$$

Recall Lagrange's equation for a coordinate q,

$$
\frac{d}{d t}\left(\frac{\partial \mathscr{L}}{\partial \dot{q}}\right)-\frac{\partial \mathscr{L}}{\partial q}=0
$$

- The center of mass coordinates

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)-\frac{\partial \mathscr{L}}{\partial x}=\frac{d}{d t}(M \dot{x})=0 \\
& \ddot{x}=0 ; \quad \ddot{R}=0 ; \vec{R}=\vec{V}_{c} t
\end{aligned}
$$

- The relative coordinates

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{I}}{\partial \dot{x}}\right)-\frac{\partial \mathcal{I}}{\partial x}=\frac{d}{d t}(\mu \dot{x})+\frac{\partial U}{\partial x}=0 \\
& \mu \ddot{\vec{r}}+\nabla U=0
\end{aligned}
$$

The two-body problem reduces to a one-body problem. for the relative

$$
\mu \ddot{\vec{r}}=-\nabla U(r)=-\hat{r} \frac{d V}{d r}
$$ coordinate; equivalent to a particle in a central potential.

The center of mass frame of reference
W.L.O.G. take $\mathbf{V}_{\mathbf{C}}=0$ and $\mathbf{R}=0$.
I.e., let the origin of the coordinate system be the center of mass.

$$
\begin{array}{ll}
\text { Note that } & \mathbf{r}_{1}=\left(\mathrm{m}_{2} / \mathrm{M}\right) \mathbf{r} \\
\text { and } & \mathbf{r}_{2}=-\left(\mathrm{m}_{1} / \mathrm{M}\right) \mathbf{r}
\end{array}
$$

$$
\text { (If } \mathrm{m}_{2} \gg \mathrm{~m}_{1} \text { then } \mathbf{r}_{1} \approx \mathbf{r} \text { and } \mathrm{r}_{2} \approx \mathbf{0} . \text {) }
$$

For example, consider the solar system ...
The center of mass is close to the center of the sun. All the planets revolve around the center of mass. And the whole thing revolves around the center of the Milky
Way galaxy. But we can ignore the motion of the center of mass when we calculate the motions of the planets or other satellites.

How to solve the equation of motion,

$$
\mu \stackrel{\bullet}{\mathbf{r}}=-G \mathrm{~m}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2} \quad \mathbf{e}_{\mathbf{r}} \quad ?
$$

How to solve the equation of motion,

$$
\mu \stackrel{\bullet}{\bullet}=-G m_{1} m_{2} / r^{2} \quad e_{r}
$$

- Do not try to use that second-order differential equation!
- Instead, use the equations for conservation of energy and angular momentum.
- The orbits are not circles, in general.

The orbits are ellipses. An ellipse depends on two geometrical parameters-the semi-major axis and the eccentricity. These are determined by two dynamical constants-the energy and the angular momentum.

Quiz Question

Visualize a binary star system, with masses M_{1} and M_{2}, in the center of mass frame of reference.
Let's say $\mathrm{M}_{2}=2 \mathrm{M}_{1}$.
Suppose the orbit of M_{2} is an ellipse with eccentricity $\varepsilon=0.5$.

Then sketch a qualitatively correct picture of the two orbits.

Homework Assignment \#13
due in class Wednesday November 29
[71] Problem $8.4 \star$
[72] Problem $8.6 \star$
[73] Problem $8.12 \star \star$
[74] Problem $8.15 \star$
[75] Problem $8.16 \star \star$
[76] The quiz question.

Use the cover sheet.

