
Chap. 2 : The 2-body central force
Section 8.3. The Equations of Motion
Section 8.4. The one-dimensional problem

Read Sections 8.3 and 8.4.

Review:
the two-body problem reduces to                                                          

(1) center of mass motion; ￡CM = ½ M R2 ;
⇒ M dR/dt = constant  ; R = VC t .
and                                              
(2) relative motion; ￡rel = ½ μ r2  − U(r) ;
⇒ conservation laws .
For astronomical examples,

U(r) = − G m1 m2 / r

8.3. The Equations of Motion

The center of mass frame of reference is 
illustrated in FIG. 8.3;  R = 0 is fixed.

FIGURE 8.3

The Lagrangian is       
￡ = ½ μ r2  − U(r) .

Lagrange's equations are
                            

μ r + ∇U = 0.
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Section 8.3.    The Equations of Motion
The Lagrangian is         

￡ = ½ μ r2  − U(r) .

Lagrange's equation s are                      

μ r + ∇U = 0 .

CONSERVATION OF ANGULAR MOMENTUM

Recall:  the total angular momentum is 
conserved, because there are no external 
forces and the internal force is central.

Theorem.  The orbit lies in a plane.

Proof. Because the vector L is 
perpendicular to the orbit plane, and L 
is constant.

What about the orbits of r1 and r2? 2
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Exercise: Prove that dL /dt = 0.
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We could 
pretend that this 
is a one-body 
problem.



SPHERICAL POLAR COORDINATES

➔ Set up a coordinate system.

➔ Define the xy-plane to be the orbit 
plane.

➔ Use spherical  polar coordinates
{r, θ, φ}.

➔ The xy-plane is θ = π /2.

➔ The Lagrangian for two 
coordinates, r and φ , is

￡= ½ μ (r2 + r2 φ2) − U(r)

d/dt (∂￡/ ∂q ) −  ∂￡/ ∂q  = 0 

● The angular coordinate ( q = φ )

φ is ignorable; the constant ( the 
generalized momentum ) is ℓ .
Exercise: Show that ℓ = |L| . 3
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● The energy

● The energy is a constant of the 
motion; prove it ...

● The radial coordinate, r

We define UCF(r) = ℓ2 / (2μr2) .

This is called the CentriFugal potential 
energy. It is not really a potential 
energy; it's really part of the kinetic 
energy. But it combines with U(r), so ... 4

2 μ r2 φ = ℓ
.
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So these are the equations of motion …                

(1) ℓ = μ r2 φ                      

(2) E = ½ μ r2 + Ueff(r)

where Ueff(r) = UCF(r) + U(r)      "EFFECTIVE POTENTIAL ENERGY"

and UCF(r) = ℓ2 / (2 μ r2)        "CENTRIFUGAL POTENTIAL ENERGY"

ℓ and E are constants, which would be determined from the initial 
conditions or other information.

One Strategy: First solve (2) [ which only depends on r(t) ] ;
then integrate (1) to get φ(t). 

Better strategy:  First combine (1) and (2) to eliminate t, and solve for r(φ);
then integrate (1) to get the relation between φ and t .
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Section 8.4.
The equivalent one-dimensional problem

THE RADIAL EQUATION
                 

E = ½ μ r 2 + UCF(r) + U(r)

It's a one-dimensional problem;
try to find r(t) .

Recall the graphical analysis of potential 
energy. Kinetic energy is positive, so E 
must be greater than Ueff(r); or, rather,
r is limited to have Ueff(r) < E.

Also, wherever Ueff(r) is equal to E is a 
turning point.

The effective potential energy

Ueff(r) = U(r) + ℓ2 / (2μr2)

U(r) = − G m1 m2 /r = − GMμ /r   for satellites

UCF(r) = ℓ2 / (2μr2)       "centrifugal potential"

                                                FIGURE 8.4
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FIGURE 8.5
Example 8.2.
Energy considerations for a comet or planet

Look at FIGURE 8.5.
⊠ If E < 0 then there are two turning points, at r = 

rminand r = rmax
 . 

This is a bounded orbit.

As the satellite revolves around the sun, it never 
gets closer than rmin and it never gets farther 
away than rmax .  At some time, r = rmin;
then r increases until r = rmax; then r decreases 
back to rmin; etc.

⊠ rmin  = rmax  = r0  is a circular orbit.

Exercise: Calculate E for a circular orbit.

⊠ If E > 0 then there is only one turning point, at r 
= rmin. This is an unbounded orbit.
The satellite will escape from the sun
( r ➝ ∞ ) .
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rmax = aphelion

rmin = perihelion

Ueff(r)

r0                  Exercise: Calculate Ueff(r0) . 



FIGURE 8.6 :  A typical unbounded orbit
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Calculate r(t) using a computer



FIGURE 8.7. Typical bounded orbits
(a) A closed orbit:  the orbit is a closed curve because when r varies from rmin to  
rmax to rmin , φ varies from 0 to 2π; i.e., the radial period is equal to the angular 
period; for example, an ellipse.
(b) An unclosed orbit: the orbit is bounded but not closed; in this figure the radial 
period is less than the angular period; for example, a precessing ellipse.
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Homework Assignment 13
due in class Friday December 2
[71] Problem 8.4 ★
[72] Problem 8.6 ★
[73] Problem 8.12 ★★

[74] Problem 8.15 ★
[75] Problem 8.16 ★★

[76] Another problem on the cover sheet.

Use the cover sheet.
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