Chap. 2 : The 2-body central force Section 8.3. The Equations of Motion Section 8.4. The one-dimensional problem Read Sections 8.3 and 8.4.

Review:

the two-body problem reduces to
(1) center of mass motion; $£_{\mathrm{cm}}=1 / 2 \mathrm{M} \dot{\mathbf{R}}^{2}$;
$\Rightarrow \mathrm{M} \mathrm{dR} / \mathrm{dt}=$ constant $; \mathbf{R}=\mathbf{V}_{\mathbf{c}} \mathrm{t}$.
and
(2) relative motion; $£_{\text {rel }}=1 / 2 \mu \dot{\mathbf{r}}^{2}-\mathrm{U}(\mathrm{r})$;
\Rightarrow conservation laws .
For astronomical examples,

$$
\mathrm{U}(\mathrm{r})=-\mathrm{G} \mathrm{~m}_{1} \mathrm{~m}_{2} / \mathrm{r}
$$

8.3. The Equations of Motion

The center of mass frame of reference is illustrated in FIG. 8.3; $\boldsymbol{R}=\mathbf{0}$ is fixed.

FIGURE 8.3

The Lagrangian is

$$
£=1 / 2 \mu \dot{\mathbf{r}}^{2}-\mathrm{U}(\mathrm{r}) .
$$

Lagrange's equations are

$$
\mu \ddot{\mathbf{r}}+\nabla \mathrm{U}=0 .
$$

Section 8.3. The Equations of Motion The Lagrangian is

$$
£=1 / 2 \mu \dot{\mathbf{r}}^{2}-\mathrm{U}(\mathrm{r}) .
$$

Lagrange's equation s are

$$
\mu \ddot{\mathbf{r}}+\nabla \mathrm{U}=0 .
$$

We could
pretend that this
is a one-body
problem.

CONSERVATION OF ANGULAR MOMENTUM

Recall: the total angular momentum is conserved, because there are no external forces and the internal force is central.

$$
\begin{aligned}
\vec{L} & =\vec{r}_{1} \times m_{1} \vec{r}_{1}+\vec{r}_{2} \times m_{2} \vec{r}_{2} \\
& =m_{1}\left(\frac{m_{2}}{M}\right)^{2} \vec{r} \times \dot{\vec{r}}+m_{2}\left(\frac{m_{1}}{M}\right)^{2} \vec{r} \times \dot{\vec{r}} \\
& =\mu \vec{r} \times \dot{\vec{r}} \quad \text { where } \mu=\frac{m_{1} m_{2}}{M}
\end{aligned}
$$

Theorem. The orbit lies in a plane.
Proof. Because the vector L is perpendicular to the orbit plane, and \mathbf{L} is constant.

What about the orbits of r_{1} and r_{2} ?

SPHERICAL POLAR COORDINATES

\rightarrow Set up a coordinate system.
$\rightarrow \quad$ Define the xy-plane to be the orbit plane.
\rightarrow Use spherical polar coordinates

$$
\{r, \theta, \varphi\} .
$$

$\rightarrow \quad$ The xy-plane is $\theta=\pi / 2$.
$\rightarrow \quad$ The Lagrangian for two coordinates, r and φ, is
$£=1 / 2 \mu\left(\mathrm{r}^{2}+\mathrm{r}^{2} \dot{\varphi}^{2}\right)-\mathrm{U}(\mathrm{r})$
$\mathrm{d} / \mathrm{dt}(\partial £ / \partial \dot{q})-\partial £ / \partial \mathrm{q}=0$

- The angular coordinate ($q=\varphi$)

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}\right)-\frac{\partial \mathcal{I}}{\partial \phi}=\frac{d}{d t}\left(\mu r^{2} \dot{\phi}\right)=0 \\
& \mu r^{2} \dot{\phi}=a \text { constant }=l
\end{aligned}
$$

φ is ignorable; the constant (the generalized momentum) is ℓ.
Exercise: Show that $\ell=|\mathbf{L}|$.
$\mu r^{2} \dot{\varphi}=\ell$

- The radial coordinate, r

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{I}}{\partial \dot{r}}\right)-\frac{\partial \mathcal{Z}}{\partial r}=\frac{d}{d t}(\mu \dot{r})-\mu r \dot{\phi}^{2}+\frac{d V}{d r} \\
& \quad=\mu^{\prime \prime}-\mu r\left(\frac{l}{\mu r^{2}}\right)^{2}+\frac{d U}{d r} \\
& =\mu \ddot{r}-\frac{l^{2}}{\mu r^{3}}+\frac{d V}{d r} \\
& =\mu \mu^{\prime \prime}+\frac{d}{d r}\left[U_{c f}(r)+U(r)\right]=0
\end{aligned}
$$

where $U_{(f}(r)=\frac{l^{2}}{2 \mu r^{2}}$
We define $\mathrm{U}_{\mathrm{CF}}(\mathrm{r})=\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right)$.
This is called the CentriFugal potential energy. It is not really a potential energy; it's really part of the kinetic energy. But it combines with $U(r)$, so ...

- The energy

$$
\begin{aligned}
E & =\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\phi}^{2}+V(r) \\
& =\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2}\left(\frac{l}{4 r^{2}}\right)^{2}+V(r) \\
& =\frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}+V(r) \\
& =\frac{1}{2} \mu \dot{r}^{2}+V_{c f}(r)+V(r)
\end{aligned}
$$

- The energy is a constant of the motion; prove it ...

$$
\begin{aligned}
& \frac{d E}{d t}=\frac{1}{2} \mu 2 \dot{r} \ddot{r}+\frac{d}{d r}\left[U_{C F}+V\right] \dot{r} \\
&=\dot{r}\left\{\mu \ddot{r}+\frac{d}{d r}\left[U_{[F}+V\right]\right\} \\
&=0 \text { equivalent to tr e } \\
& \text { radial equation }
\end{aligned}
$$

So these are the equations of motion ...
(1)

$$
\ell=\mu \mathrm{r}^{2} \dot{\varphi}
$$

(2)

$$
\begin{aligned}
& \mathrm{E}=1 / 2 \mu \dot{\mathrm{r}}^{2}+\mathrm{U}_{\text {eff }}(\mathrm{r}) \\
& \text { where } \mathrm{U}_{\text {eff }}(\mathrm{r})=\mathrm{U}_{\mathrm{CF}}(\mathrm{r})+\mathrm{U}(\mathrm{r}) \quad \text { "EFFECTIVE POTENTIAL ENERGY" } \\
& \text { and } \mathrm{U}_{\mathrm{CF}}(\mathrm{r})=\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right) \quad \text { "CENTRIFUGAL POTENTIAL ENERGY" }
\end{aligned}
$$

ℓ and E are constants, which would be determined from the initial conditions or other information.

One Strategy: First solve (2) [which only depends on $r(t)$] ; then integrate (1) to get $\varphi(\mathrm{t})$.
Better strategy: First combine (1) and (2) to eliminate t, and solve for $r(\varphi)$; then integrate (1) to get the relation between φ and t.

Section 8.4.
The equivalent one-dimensional problem

THE RADIAL EQUATION

$$
\mathrm{E}=1 / 2 \mu \dot{\mathrm{r}}^{2}+\mathrm{U}_{\mathrm{CF}}(\mathrm{r})+\mathrm{U}(\mathrm{r})
$$

It's a one-dimensional problem; try to find $\mathrm{r}(\mathrm{t})$.

Recall the graphical analysis of potential energy. Kinetic energy is positive, so E must be greater than $U_{\text {eff }}(\mathrm{r})$; or, rather, r is limited to have $U_{\text {eff }}(r)<E$.

Also, wherever $U_{\text {eff }}(r)$ is equal to E is a turning point.

The effective potential energy

$$
\mathrm{U}_{\text {eff }}(\mathrm{r})=\mathrm{U}(\mathrm{r})+\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right)
$$

$\mathrm{U}(\mathrm{r})=-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}=-\mathrm{GM} \mu / \mathrm{r}$ for satellites
$\mathrm{U}_{\mathrm{CF}}(\mathrm{r})=\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right) \quad$ "centrifugal potential"
FIGURE 8.4

Example 8.2.

Energy considerations for a comet or planet
Look at FIGURE 8.5.
\otimes If $\mathrm{E}<0$ then there are two turning points, at $\mathrm{r}=$
$\mathrm{r}_{\text {min }}$ and $\mathrm{r}=\mathrm{r}_{\text {max }}$.
This is a bounded orbit.
As the satellite revolves around the sun, it never gets closer than $r_{\text {min }}$ and it never gets farther away than $r_{\text {max }}$. At some time, $r=r_{\text {min }}$; then r increases until $r=r_{\text {max }}$; then r decreases back to $\mathrm{r}_{\text {min }} ;$ etc.
$\boxtimes r_{\text {min }}=r_{\text {max }}=r_{0}$ is a circular orbit.
Exercise: Calculate Efor a circular orbit.
\boxtimes If $\mathrm{E}>0$ then there is only one turning point, at r $=r_{\text {min }}$. This is an unbounded orbit. The satellite will escape from the sun (r $\rightarrow \infty$).

FIGURE 8.6 : A typical unbounded orbit

Calculate $\mathrm{r}(\mathrm{t})$ using a computer

By energy consalation,

$$
\dot{r}^{2}=\frac{2}{\mu}\left[E-\frac{l^{2}}{2 \mu r^{2}}+\frac{G M \mu}{r}\right]
$$

wit $r(0)=r_{p}$. Then $E=\frac{\ell^{2}}{2 \mu r_{p}^{2}}-\frac{G M_{\mu}}{r_{p}}$
Then (PERIHELION)
$t=\int_{r_{p}}^{r} \frac{d r^{\prime}}{\left.\sqrt{\frac{2}{\mu}\left[E-\frac{l^{2}}{3 \mu r^{\prime 2}}\right.}+\frac{G M_{\mu}}{r}\right]}$
Colualute tG intogral numericiall 3
then blot r versus t.

FIGURE 8.7.
Typical bounded orbits
(a) A closed orbit: the orbit is a closed curve because when r varies from $r_{\text {min }}$ to
$\mathrm{r}_{\max }$ to $\mathrm{r}_{\min }, \varphi$ varies from 0 to 2π; i.e., the radial period is equal to the angular period; for example, an ellipse.
(b) An unclosed orbit: the orbit is bounded but not closed; in this figure the radial period is less than the angular period; for example, a precessing ellipse.

Homework Assignment 13
due in class Friday December 2
[71] Problem $8.4 \star$
[72] Problem $8.6 \star$
[73] Problem $8.12 \star \star$
[74] Problem $8.15 \star$
[75] Problem $8.16 \star \star$
[76] Another problem on the cover sheet.

Use the cover sheet.

