HOMEWORK AND EXAMS

- Homework Set 13
due Wednesday November 27
- Exam 3

Monday December 4

- Homework Set 14
due Friday December 8
- Final Exam

Tuesday December 12

CHAPTER 8

TWO BODIES WITH A CENTRAL FORCE

ANGULAR MOMENTUM IS CONSERVED, SO THE 2 BODIES MOVE ON A PLANE, CALLED THE ORBIT PLANE.

THE CENTER OF MASS POSITION VECTOR AND THE RELATIVE POSITION VECTOR

$$
\begin{aligned}
& \mathbf{R}=\left(\mathrm{m}_{1} \mathbf{r}_{1}+\mathrm{m}_{2} \mathbf{r}_{2}\right) / \mathrm{M} \\
& \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2} \\
& \mathbf{r}_{1}=\mathbf{R}+\left(\mathrm{m}_{2} / \mathrm{M}\right) \mathbf{r} \\
& \mathbf{r}_{2}=\mathbf{R}-\left(\mathrm{m}_{1} / \mathrm{M}\right) \mathbf{r}
\end{aligned}
$$

8.5 The Equation of the Orbit

Review Sections 8.1 to 8.4
※ The 2-body problem reduces to 2 1-body problems:
※ The center of mass moves with constant velocity; $\mathbf{R}(\mathrm{t})=\mathrm{V}_{\mathrm{c}} \mathrm{t}$.
※ The dynamics of the relative position $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$, is $\mu \mathbf{r}^{\prime \prime}=\mathbf{F}$, which is equivalent to a (fictitious) 1-body problem with mass $\mu=m_{1} m_{2} / M$.

Plane polar coordinates, r and φ
2. In Lagrangian terms,

$$
£_{\text {rel }}=1 / 2 \mu\left(\dot{\mathrm{r}}^{2}+\mathrm{r}^{2} \dot{\varphi}^{2}\right)-\mathrm{U}(\mathrm{r})
$$

3. There are two constants of the motion, ℓ and E :

$$
\begin{aligned}
& \ell=\mu \mathrm{r}^{2} \dot{\varphi} \\
& \mathrm{E}=1 / 2 \mu\left(\dot{\mathrm{r}}^{2}+\mathrm{r}^{2} \dot{\varphi}^{2}\right)+\mathrm{U}(\mathrm{r}) \\
& \mathrm{E}=1 / 2 \mu \dot{\mathrm{r}}^{2}+\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right)+\mathrm{U}(\mathrm{r})
\end{aligned}
$$

The equation for the orbit

\square The "orbit" means the
"trajectory"; i.e., the curve in space that the object moves on.
\square The "orbit" means the curve, without time information.

Today we'll try to calculate the
orbit, and then later we'll add the
Today we'll try to calculate the
orbit, and then later we'll add the time information.
\square The equation for the orbit is a function $r(\varphi)$.

My method (different from Taylor)
Start with $\ell=\mu \mathrm{r}^{2} \dot{\varphi}$ and

$$
\mathrm{E}=1 / 2 \mu \dot{\mathrm{r}}^{2}+\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right)+\mathrm{U}(\mathrm{r}) .
$$

Now eliminate t like this:

$$
\begin{gathered}
\ell=\mu r^{2}(d \varphi / d t) \\
d t=\mu r^{2}(d \varphi) / \ell \\
\text { so } \quad \dot{\mathrm{r}}=\mathrm{dr} / \mathrm{dt}=\frac{\ell \mathrm{dr}}{\mu \mathrm{r}^{2} \mathrm{~d} \varphi}
\end{gathered}
$$

Put that into (2).

My method (different from Taylor)

Start with $\ell=\mu r^{2} \dot{\varphi}$ and

$$
\begin{equation*}
\mathrm{E}=1 / 2 \mu \dot{\mathrm{r}}^{2}+\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right)+\mathrm{U}(\mathrm{r}) . \tag{2}
\end{equation*}
$$

Now eliminate t like this:

$$
\begin{aligned}
& \ell=\mu r^{2}(d \varphi / d t) \\
& d t=\mu r^{2}(d \varphi) / \ell
\end{aligned}
$$

so $\quad \dot{\mathrm{r}}=\mathrm{dr} / \mathrm{dt}=$

$$
\frac{d r}{\left(\mu r^{2} / \ell\right) d \varphi}
$$

But first, let $u=1 / r$.
Then we'll calculate $u(\varphi)$.
That will solve the problem, because then $r(\varphi)=1 / u(\varphi)$.

OK, $\quad r=1 / u \Rightarrow d r=-\left(1 / u^{2}\right) d u$.

$$
\begin{gathered}
\frac{d r}{d \varphi}=-\frac{1}{u^{2}} \quad \frac{d u}{d \varphi} \\
\dot{r}=-\frac{\ell}{\mu r^{2}} \frac{1}{u^{2}} \frac{d u}{d \varphi}
\end{gathered}
$$

- Also, let $\mu=m$ because μ looks too much like $u . \quad$ Note: $r^{2} u^{2}=1$.

$$
\begin{gathered}
\mathrm{E}=1 / 2 \mu \mathrm{r}^{2}+\ell^{2} /\left(2 \mu \mathrm{r}^{2}\right)+\mathrm{U}(\mathrm{r}) \\
\mathrm{r}=-(\ell / \mathrm{m}) \mathrm{du} / \mathrm{d} \varphi
\end{gathered}
$$

$$
\begin{aligned}
E= & 1 / 2 m(\ell / m)^{2}(d u / d \varphi)^{2} \\
& +\ell^{2} u^{2} /(2 m)+U(r)
\end{aligned}
$$

\{ Don't confuse u and U;

$$
\begin{aligned}
& \mathrm{u}=\mathrm{u}(\mathrm{t})=1 / \mathrm{r}(\mathrm{t}) \\
& \mathrm{U}=\mathrm{U}(\mathrm{r}) \text { the potential energy }\}
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{du} / \mathrm{d} \varphi)^{2}+\mathrm{u}^{2} \\
& \quad=\left(2 \mathrm{~m} / \ell^{2}\right)[\mathrm{E}-\mathrm{U}(\mathrm{r})]
\end{aligned}
$$

8.6 Keplerian Orbits

$\star \quad \mathrm{U}(\mathrm{r})$ is the gravitational potential energy.

$$
\begin{aligned}
& \mathrm{U}(\mathrm{r})=-\mathrm{G} \mathrm{~m}_{1} \mathrm{~m}_{2} / \mathrm{r} \\
& \mathrm{U}(\mathrm{r})=-\mathrm{GMm} \mathrm{u}
\end{aligned}
$$

Note: $\mathrm{m}_{1} \mathrm{~m}_{2}=\mathrm{M} \mu$

$$
\mathrm{U}(\mathrm{r})=-\mathrm{K} \text { u where } \mathrm{K}=\mathrm{GMm}
$$

- OK, here is the equation we had:

$$
\begin{gathered}
(\mathrm{du} / \mathrm{d} \varphi)^{2}+\left(\mathrm{u}-\mathrm{mK} / \ell^{2}\right)^{2} \\
=2 \mathrm{mE} / \ell^{2}+\left(\mathrm{mK} / \ell^{2}\right)^{2} \equiv \mathrm{~A}^{2}
\end{gathered}
$$

- and here is the solution:

$$
\begin{aligned}
\mathrm{u}(\varphi) & =\mathrm{mK} / \ell^{2}+\xi(\varphi) \\
& =\mathrm{mK} / \ell^{2}+\mathrm{A} \cos \left(\varphi-\varphi_{0}\right) .
\end{aligned}
$$

Thus the orbit equation in plane polar coordinates is

$$
\frac{1}{\mathrm{r}(\varphi)}=\mathrm{mK} / \ell^{2}+\mathrm{A} \cos \left(\varphi-\varphi_{0}\right) .
$$

What curve is this?

I've introduced a bunch of constants.
Let's write them down again.

- $\mathrm{K}=\mathrm{GM} \mathrm{M}=\mathrm{Gm}_{1} \mathrm{~m}_{2}$; this is not a variable.
- $\mathrm{A}=\mathrm{SQRT}\left[2 \mathrm{mE} / \ell^{2}+\left(\mathrm{mK} / \ell^{2}\right)^{2}\right] ;$ thus A is determined by E and ℓ.
- $\varphi_{0}=$ a boundary condition for the angle φ.
- $\ell=$ angular momentum
- E = energy; recall from last time that $\mathrm{E} \leq 0$ for a bounded orbit.

Thus the orbit depends on three parameters ... $\left\{\ell, \mathrm{E}, \varphi_{0}\right\}$.

$$
\begin{aligned}
& (\mathrm{du} / \mathrm{d} \varphi)^{2}+\mathrm{u}^{2} \\
& \quad=\left(2 \mathrm{~m} / \ell^{2}\right)[\mathrm{E}-\mathrm{U}(\mathrm{r})]
\end{aligned}
$$

$\mathrm{U}(\mathrm{r})=-\mathrm{K} \mathrm{u}$ where $\mathrm{K}=\mathrm{GMm}$
$(\mathrm{du} / \mathrm{d} \varphi)^{2}+\mathrm{u}^{2}$

$$
\begin{aligned}
& =\left(2 \mathrm{~m} / \ell^{2}\right)[\mathrm{E}-\mathrm{U}(\mathrm{r})] \\
& =\left(2 \mathrm{mE} / \ell^{2}\right)+\left(2 \mathrm{mK} / \ell^{2}\right) \mathrm{u}
\end{aligned}
$$

$(d u / d \varphi)^{2}+\left(u-m K / \ell^{2}\right)^{2}$

$$
=2 \mathrm{mE} / \ell^{2}+\left(\mathrm{mK} / \ell^{2}\right)^{2} \equiv \mathrm{~A}^{2}
$$

$$
(d u / d \varphi)^{2}+\left(u-m K / \ell^{2}\right)^{2}=A^{2}
$$

Solution

Let $\xi(\varphi)=u(\varphi)-m K / \ell^{2}$.
Then

$$
(d \xi / d \varphi)^{2}+\xi^{2}=A^{2} .
$$

Differentiate w.r.t. φ

$$
\begin{gathered}
2 \xi^{\prime}(\varphi) \xi^{\prime \prime}(\varphi)+2 \xi(\varphi) \xi^{\prime}(\varphi)=0 . \\
\xi^{\prime \prime}(\varphi)=-\xi(\varphi) .
\end{gathered}
$$

\because. We can write $\xi(\varphi)=C \cos \left(\varphi-\varphi_{0}\right)$.
Now... $\quad \xi^{\prime}(\varphi)^{2}+\xi(\varphi)^{2}$

$$
=C^{2} \sin ^{2}+C^{2} \cos ^{2}=C^{2}=A^{2}
$$

The orbit equation in plane polar coordinates is

$$
\frac{1}{\mathrm{r}(\varphi)}=\mathrm{mK} / \ell^{2}+\mathrm{A} \cos \left(\varphi-\varphi_{0}\right) .
$$

What curve is this?

Recall,

$$
\mathrm{A}^{2}=2 \mathrm{mE} / \ell^{2}+\left(\mathrm{mK} / \ell^{2}\right)^{2} .
$$

E is <0, so $\mathrm{A}<\left(\mathrm{mK} / \ell^{2}\right)$.
Let's write $A=\varepsilon\left(\mathrm{mK} / \ell^{2}\right)$ where $\varepsilon<1$;
i.e., we define another constant ε, and use that instead of A.

So now we have

$$
\frac{1}{\mathrm{r}(\varphi)}=\left(\mathrm{mK} / \ell^{2}\right)\left[1+\varepsilon \cos \left(\varphi-\varphi_{0}\right)\right]
$$

Analyze the curve:

$$
-1 \leq \cos \leq 1 \text { and } \quad \varepsilon<1 ;
$$

therefore

$$
\mathrm{r}_{\min } \leq \mathrm{r} \leq \mathrm{r}_{\max }
$$

where

$$
\begin{aligned}
& \mathrm{r}_{\min }=\frac{\ell^{2}}{\mathrm{mK}(1+\varepsilon)} \text { (perihelion) } \\
& \mathrm{r}_{\max }=\frac{\ell^{2}}{\mathrm{mK}(1-\varepsilon)} \text { (aphelion) }
\end{aligned}
$$

QUIZ QUESTION

The orbit equation in plane polar coordinates is

$$
1 / r=m K / \ell^{2}\left\{1-\varepsilon \cos \left(\varphi-\varphi_{\theta}\right)\right\} .
$$

Sketch a graph of the orbit, and label some points on the curve.

HOMEWORK AND EXAMS

- Homework Set 13 due Wednesday November 27
- Exam 3

Monday December 4

- Homework Set 14
due Friday December 8
- Final Exam

Tuesday December 12

