Section 8.6. Bounded Kepler orbits
Section 8.7. Unbounded Kepler Orbits Read Sections 8.6 and 8.7.

- Review the equations so far
- The orbit

$$
\begin{aligned}
& r(\phi)=\frac{\lambda}{1+\epsilon \cos \phi} \\
& r_{\text {min }}=\frac{\lambda}{1+\epsilon} \text { and } \lambda_{\text {max }}=\frac{\lambda}{1-\epsilon} \\
& a=\operatorname{semimnjor} \operatorname{arcs}=\frac{1}{2}\left(r_{\text {min }}+r_{\text {max }}\right) \\
& a=\frac{\lambda}{1-\epsilon^{2}}
\end{aligned}
$$

Exercise $\epsilon=\frac{r_{\text {max }}-r_{\text {min }}}{r_{\text {max }}+r_{\text {min }}}$

- \quad and E for Keplerian orbits
- Use $\{\boldsymbol{a}, \boldsymbol{\varepsilon}\}$ to define the ellipse.Relate energy (\boldsymbol{E}) and angular momentum ($\boldsymbol{\ell}$) to semimajor axis (a) and eccentricity (ε).
- arigular ucomentan $\ell=\mu r^{2} \dot{\phi}$

Recall $\frac{1}{\lambda}=\frac{m K}{l^{2}}$

$$
\left\{x=\frac{1}{r}=\frac{m L K}{l^{2}}+A \cos \phi\right\}
$$

$$
\therefore l^{2}=m K \lambda=m K a\left(1-\varepsilon^{2}\right)
$$

defends in both a and ε.

Results

- every $E=\frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}-\frac{k}{r}$

When $\phi \approx 0, \dot{r}=0$ because $r=r_{\text {main- }}$

$$
\begin{aligned}
\therefore & E=\frac{l^{2}}{3 \mu r_{\text {min }}^{2}}-\frac{K}{r_{\text {min }}} \\
E= & \frac{m K a\left(1-\epsilon^{2}\right)}{2 \mu \lambda^{2} /(1+\epsilon)^{2}}-\frac{K}{\lambda /(1+\epsilon)} \\
& \quad(\text { remember : } 1=\mu) \\
E= & \frac{K}{2} \frac{(1+\epsilon)^{2}}{\lambda}-\frac{K(1+\varepsilon)}{\lambda}=\frac{K}{2 \lambda}(1+\epsilon)(\epsilon-1) \\
E= & -\frac{K}{2 a} \quad(\text { INDEPGODENT OF } \varepsilon!)
\end{aligned}
$$

$$
\begin{aligned}
& \ell^{2}=\mu \mathrm{Ka}\left(1-\varepsilon^{2}\right) \\
& \mathrm{E}=-\mathrm{K} /(2 \mathrm{a}) \\
& \mathrm{K}=\mathrm{Gm}_{1} \mathrm{~m}_{2}=\mathrm{GM} \mu
\end{aligned}
$$

- Kepler's third law (1619)

By analyzing Tycho's observations of the planets, Kepler concluded that $\tau^{2} \propto \mathrm{a}^{3}$ for all the planets; in other words, $\tau^{2} / \mathrm{a}^{3}=$ constant.

It's not precisely true, but it is very close; recall Problem (8.15).
(1) The derivation from Newton's theory, for circular orbits, is easy.

$$
\begin{aligned}
u \stackrel{\prime}{r} & =\frac{-k}{r^{2}} \hat{r} \\
-\frac{u v^{2}}{r} & =\frac{-k}{r^{2}}
\end{aligned}
$$

$$
v=\sqrt{\frac{K}{u r}}=\sqrt{\frac{G M}{r}}
$$

The speed is constant, so

$$
\begin{aligned}
& \tau=\frac{2 \pi r}{v}=2 \pi \sqrt{\frac{r^{3}}{G M}} \\
& \tau^{2}=\frac{4 \pi^{2} r^{3}}{G M}
\end{aligned}
$$

Here $M=M_{\text {sin }}+M_{p l i n e t} \approx M_{\text {sun }}$;
so $\tau^{2} \approx \frac{4 r^{2} r^{3}}{G M_{\text {sin n }}}$ 1.e. $\tau_{\text {APFPOMM }}^{2} \sigma^{3}$
APFPOMMATELY! KEPLER's THIRD LAW
(2) The derivation for elliptical orbits is not quite so easy.

Recall Kepter's $2 \underline{n d}$ Law, which we studical mi chapter 3 ;
"equal areas in equal time";

$$
\frac{d A}{d t}=\frac{l}{2 \mu}\left\{\begin{array}{l}
\text { ANY CENTRAL FORCE } \\
-C H A P T E R \\
-C O N S T A N T
\end{array}\right.
$$

Thus $A=\frac{l o \tau}{2 \mu}$
WHAT IS THE AREA OF AN ELLIPSE?

What in the area of un ellipse?

$$
A=\pi r^{2}
$$

$$
A=\pi a b
$$

$$
\int d A=\int_{-\infty}^{a} 2 y d x \text { and } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
=\int_{-a}^{a} 2 b \sqrt{1-x^{2} / 4^{2}} d x=\pi a b
$$

So $\tau=\frac{2 \mu}{l} \pi a b$
Recall : $a=\frac{\lambda}{1-\epsilon^{2}}$ and $b=\frac{\lambda}{\sqrt{1-\epsilon^{2}}}$

$$
\begin{aligned}
& \tau=\frac{2 \pi \mu a a \sqrt{1-\epsilon^{2}}}{\sqrt{\mu K a\left(1-\epsilon^{2}\right)}} \\
& \tau=2 \pi \sqrt{\frac{a^{3}}{\sigma^{3}}}
\end{aligned}
$$

$\tau^{2}=\frac{4 \pi^{2} a^{3}}{(G M)^{2}} \quad$ same as fir a ($r \rightarrow a$)

- Section 8.6. Bounded Kepler Orbits

We have been considering bounded Kepler orbits. These have energy $\mathrm{E}<0$.
The orbits are ellipses with eccentricity ε in the range $0 \leq \varepsilon<1$.
(A circular orbit has $\varepsilon=0$.)

Section 8.7. Unbounded Kepler Orbits

We can reuse some of the equations that we had before; they are valid for either

```
E<0 or E > 0.
```


Equations

$$
\begin{aligned}
& \mathrm{r}(\varphi)=-\overline{1+\varepsilon} \frac{\lambda}{\cos \varphi}-\mathrm{r}_{\min }=\lambda /(1+\varepsilon) \\
& \varepsilon \geq 1 \\
& \lambda=l^{2} /(\mathrm{K} \mu) \quad \text { and } l=\mu \mathrm{r}^{2} \dot{\varphi} \\
& \mathrm{E}=1 / 2 \mu \dot{\mathrm{r}}^{2}+\frac{l^{2}}{2 \mu \mathrm{r}^{2}}-\frac{\mathrm{K}}{\mathrm{r}}
\end{aligned}
$$

Parabolic orbits have $\varepsilon=1$.

$$
r(\varphi)=\frac{\lambda}{1+\cos \varphi}
$$

Why is this a parabola?

$$
x=r \cos \varphi
$$

$$
y=r \sin \varphi
$$

$$
\begin{aligned}
& (1+\cos \varphi) r=r+x=\lambda \\
& r^{2}=x^{2}+y^{2}=(\lambda-x)^{2}=\lambda^{2}-2 \lambda x+x^{2} \\
& x=\left(\lambda^{2}-y^{2}\right) /(2 \lambda)
\end{aligned}
$$

the eq. for a parabola

$$
\text { Or, } y= \pm \operatorname{sqrt}\left(\lambda^{2}-2 \lambda x\right)
$$

The energy for the parabolic orbit

$$
\begin{aligned}
& E=\frac{1}{2} \mu \dot{r}^{2}+\frac{l^{2}}{2 \mu r^{2}}-\frac{k}{r} \\
& \therefore E=\frac{l^{2}}{3 \mu \mu_{\text {min }}^{2}}-\frac{K}{r_{\text {min }}} \quad(r=0 \text { at } \\
& \left.r=r_{\text {man }}\right)
\end{aligned}
$$

$$
\therefore E=\frac{1}{r_{\text {man }}}\left(\frac{e^{2}}{3 r_{\text {man }}}-k\right)=\frac{1}{r_{\text {man }}}\left(\frac{\Lambda^{2}}{3 k k} \frac{2 k \mu}{e^{2}}-k\right)
$$

$E=0$

$$
=0
$$

Hyperbolic orbits have $\varepsilon>1$

$$
\mathrm{r}(\varphi)=\frac{\lambda}{1+\frac{\lambda}{\varepsilon \cos \varphi}-}
$$

Why is this a hyperbola?

Note that $r \rightarrow \infty$ as $\varphi \rightarrow \varphi_{\max }$
where $\quad \cos \varphi_{\max }=-\frac{1}{\varepsilon}$
which requires $\varepsilon>1$

The energy for a hyperbolic orbit.

$$
\begin{aligned}
& E=\frac{l^{2}}{3 \mu r_{m o n}}-\frac{d}{1 \min } \quad(F=0) \\
& \text { Recoll } \lambda=\frac{l^{2}}{K \mu} \text { and } r_{\text {mats }}=\frac{\lambda}{1+E} \\
& E=\frac{\Lambda^{2} \mu}{2 l^{2}}\left(\epsilon^{2}-1\right) \\
& \text { so } \quad E>1 D \quad(G>1)
\end{aligned}
$$

$$
E>0
$$

Four different Kepler orbits. These have the same perihelion points ($r_{\min }$ and δ) and different yálues of ε.

Given the position and velocity vectors at one point on the orbit, the constants of motion l and E are determined.
The sign of E determines the curve:
$E<0$ bounded elliptical
$E=0$ unbounded parabolic
$E>0$ unbounded hyperbolic
Given l and E, the geometric parameters are determined; e.g., $\quad\left\{r_{\text {min }}, r_{\text {max }}, \varepsilon\right\}$.
These are the Kepler orbits in space; but what about the time dependence?

Exam 3 is Monday.
Homework assignment \#14 is due next Friday.

