Section 8.6. Bounded Kepler orbits

Section 8.7. Unbounded Kepler Orbits
Read Sections 8.6 and 8.7.

e Review the equations so far
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e ¢ and E for Keplerian orbits
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Use {a,¢} to define the ellipse.

Relate energy (E) and angular
momentum (£) to semimajor axis
(a) and eccentricity ().
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e Kepler's third law (1619)

By analyzing Tycho's observations of the
planets, Kepler concluded that t o< a3 for all the
planets; in other words, > / a® = constant.

It's not precisely true, but it is very close; recall
Problem (8.15). (1) The derivation from
Newton's theory, for circular orbits, is easy.
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(2) The derivation for elliptical orbits is not
quite so easy.

Recdd Keplers 204 law, o'
we stadied v haplee 2]
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e Section 8.6. Bounded Kepler Orbits
We have been considering bounded Kepler

orbits. These have energy E < 0.

The orbits are ellipses with eccentricity ¢
in therange 0 <g<1.

(A circular orbit has € =0.)

N FIGURE 8.11

Equations
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0<e<l1
A=12/(Kp) and [=pr?¢
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= Four djfferent Kepler orbits.
These have the same perihelion
povnts (r.,, @and d) and different
values of £,




Section 8.7. Unbounded Kepler Orbits
Now consider orbits with E > 0.

We can reuse some of the equations
that we had before; they are valid for
either

E<OorE>O0.

Equations

r =L /(1+e)

A=12/(Ku) and I=pro

2
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- Four djfferent Kepler orbits.
The§e have the same perihelion
points (r . and d) and different

ra
values of €.
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Parabolic orbits have € = 1.

r( ) = __)\__
? 1+cos@
Why is this a parabola?
X =71 COS ¢
y=rsin ¢

(T+cos@)r=r+x=A
r2=x2+y2=(A=Xx)?=A = 2Ax +x?

X = (A = y2)/(2N)
the eq. for a parabola

Or, y =+ sqrt (A2 — 2Ax)
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The energy for the parabolic orbit

E=dupz p A= K
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Hyperbolic orbits have € > 1

Why is this a hyperbola?

Note thatr — < as @ — @

where cosQ___=-

max

X =71 COS ¢
y=rsin ¢

max

1

€

which requires £ > 1

The energy for a hyperbolic orbit.
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ORISRV ([ Given the position and velocity vectors at one
point on the orbif, the constants of motion 4
and E are determined.

LA 7he ¢ign of € determines the corve:

E<0  bounded elliptical
E=0 unbovnded parabolic
E>0 unbouvnded hyperbolic

L Given 8 and €, the geometric parametere are
determined; e.g., [km;” L £/.

L These are the Kepler orbits in space;
but what about the time dependence?
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Four djfferent Kepler orbits. Exam 3 i¢ /I/Ianc/ay.

Thesée have the same perihelion ] . .
points (r__and 5) and different Homework assignment #14 ic due next Friday.

ra
values of €.




