1. Homework Assignment 14 is due Friday.
2. Final Exam is Tuesday December 12:

$$
\begin{aligned}
& \text { Final Exam: Tuesday, Dec } 122017 \\
& \text { 12:45pm - 2:45pm } \\
& \text { Room } 1420 \text { Biomedical \& Physical Sciences Bldg }
\end{aligned}
$$

3. The final exam will be based on Chapter 8.
4. You will be given an equation sheet, which will consist of Taylor's "Principal Equations" on pages 319 and 320.
5. To study for the exam: (i) read and understand Chapter 8; (ii) make sure that you are familiar with pages 319 and 320; (iii) review the chapter 8 lectures and homework.

NASA is making plans to send astronauts to Mars (~ year 2040?) If you want to read about it, search Google for the report ; search for "Mars Design Reference Architecture 5.0 - NASA" (2009)

Human Exploration of Mars Design Reference Architecture 5.0

6.2 Decision 1: Mission Type

a) Opposition Class: Short-Stay Mission

b) Conjunction Class: Long-Stay Mission

Figure 6-2. Comparison of (a) Opposition-class and (b) Conjunction-class mission profiles.
"short stay mission"
30 days on Mars;
go home via Venus.
"long stay mission" 496 days on Mars

> Astrodynamics; Transfer orbits (Section 8.8); Gravity Assist "slingshot"; orbital timing

Parametric equations for Keplerian orbits Kepler's Equation $\quad M=E-\varepsilon \sin (E)$

This equation was published by Kepler (1619)

$$
\begin{aligned}
& \mathrm{M}=\text { "mean anomaly" } \\
& \mathrm{E}=\text { "eccentric anomaly" } \\
& \varepsilon=\text { eccentricity }
\end{aligned}
$$

The coordinates of the planet are

$$
\begin{aligned}
& x=a[\cos (E)-\varepsilon] \\
& y=b \sin (E)
\end{aligned}
$$

where
$\mathrm{a}=$ semimajor axis
b = semiminor axis
Kepler's equation is transcendental.
Numerical analysis is necessary to solve for "E".

I'll use ψ to denote the "eccentric anomaly".

reference circle; radius $=\mathrm{a}$ orbit ellipse; semimajor axis =a $\mathrm{C}=$ center ; $\mathrm{S}=$ Sun ; $\mathrm{P}=$ planet $\psi=$ eccentric anomaly $x=r \cos \varphi=a \cos \psi-a \varepsilon$ $y=r \sin \varphi=b \sin \psi \quad \longleftarrow w h y ? b / c-$ $(x+a \varepsilon)^{2} / a^{2}+y^{2} / b^{2}=1$ (ellipse)

$$
\begin{aligned}
& \text { Max. } x=a(1-\varepsilon) \text { at } \psi=0 ; \quad \text { CHECK } \\
& \operatorname{Max.} y=b \quad \text { at } \quad \psi=\pi / 2 ; \\
& r=a \quad \text { at } \quad \psi=\pi / 2 \\
& \left.(a \varepsilon)^{2}+b^{2}=a^{2} \text { so } b=a \text { SQRT[} 1-\varepsilon^{2}\right]
\end{aligned}
$$

The sun is at the origin and the plane of the orbit has Cartesian coordinates x and y . The center is at $\{\mathrm{x}, \mathrm{y}\}=\{-\mathrm{a} \varepsilon, 0\}$.
reference circle; radius = a orbit ellipse; semimajor axis = a $\mathrm{C}=$ center ; $\mathrm{S}=\mathrm{Sun} ; \mathrm{P}=$ planet $\psi=$ eccentric anomaly
$x=r \cos \varphi=a \cos \psi-a \varepsilon$
$y=r \sin \varphi=b \sin \psi$ $(x+a \varepsilon)^{2} / a^{2}+y^{2} / b^{2}=1$ (ellipse) -

We can write parametric equations for all three variables
(time $=\mathrm{t}$ and spatial coordinates $=\mathrm{x}$ and y) in terms of the independent variable ψ :

$$
\begin{align*}
& \mathrm{t}=\mathrm{T} /(2 \pi)(\psi-\varepsilon \sin \psi) \tag{1}\\
& \mathrm{x}=\mathrm{a}(\cos \psi-\varepsilon) \\
& \mathrm{y}=\mathrm{a}\left(1-\varepsilon^{2}\right)^{1 / 2} \sin \psi \tag{3}
\end{align*}
$$

The sun is at the origin and the plane of the orbit has Cartesian coordinates x and y .
We can write parametric equations for the three variables
(time $=\mathrm{t}$ and spatial coordinates $=\mathrm{x}$ and y) in terms of the independent variable ψ :

$$
\begin{align*}
& \mathrm{t}=\mathrm{T} /(2 \pi)(\psi-\varepsilon \sin \psi) \tag{1}\\
& \mathrm{x}=\mathrm{a}(\cos \psi-\varepsilon) \tag{2}\\
& \mathrm{y}=\mathrm{a}\left(1-\varepsilon^{2}\right)^{1 / 2} \sin \psi \tag{3}
\end{align*}
$$

The parameters T, a and ε are

$$
\begin{aligned}
& \mathrm{T}=\text { period of revolution; } \quad \Psi \mapsto \Psi+2 \pi \\
& \mathrm{a}=\text { semimajor axis } \\
& \varepsilon=\text { eccentricity. }
\end{aligned}
$$

In term of Kepler's variables,
$\psi=\mathrm{E}$
$\mathrm{t}=\mathrm{T} /(2 \mathrm{~m}) \mathrm{M}$
$M=E-\varepsilon \sin E$

Proof of the parametric equations.

$$
\begin{equation*}
\mathrm{t}=\mathrm{T} /(2 \pi)(\psi-\varepsilon \sin \psi) \tag{1}
\end{equation*}
$$

$$
\mathrm{dt} / \mathrm{d} \psi=\mathrm{T} /(2 \pi)(1-\varepsilon \cos \psi)
$$

We must prove that E (energy) and ℓ (ang. momentum) are constants of the motion.

Theorem 1

The angular momentum (ℓ) is a constant of the motion.
Proof
$\ell=\mu(\mathrm{x} \dot{\mathrm{y}}-\mathrm{y} \dot{\mathrm{x}})$

$$
\begin{aligned}
\mathrm{dx} / \mathrm{dt} & =(\mathrm{dx} / \mathrm{d} \psi)(\mathrm{d} \psi / \mathrm{dt}) \\
& =(-\mathrm{a} \sin \psi)(2 \pi / T)(1-\varepsilon \cos \psi) \\
\mathrm{dy} / \mathrm{dt} & =(\mathrm{dy} / \mathrm{d} \psi)(\mathrm{d} \psi / \mathrm{dt}) \\
& =(\mathrm{b} \cos \psi) \quad(2 \pi / T)(1-\varepsilon \cos \psi)^{-1}
\end{aligned}
$$

$=\mu \mathrm{ab}\left\{(\cos \psi-\varepsilon) \cos \psi+\sin ^{2} \psi\right\}(2 \pi / \mathrm{T})(1-\varepsilon \cos \psi)^{-1}$
$=\mu \mathrm{ab}(2 \pi / \mathrm{T})$ which is constant
Also note: $\mathrm{T}=(\pi \mathrm{ab})(2 \mu / \ell)$ which agrees with Kepler's second law ; $\mathrm{dA} / \mathrm{dt}=\ell /(2 \mu) \Rightarrow \mathrm{A} / \mathrm{T}=\ell /(2 \mu)$
(3.17)

$$
\begin{align*}
& \mathrm{t}=\mathrm{T} /(2 \pi)(\psi-\varepsilon \sin \psi) \\
& \mathrm{x}=\mathrm{a}(\cos \psi-\varepsilon) \tag{2}\\
& \mathrm{y}=\mathrm{a}\left(1-\varepsilon^{2}\right)^{1 / 2} \sin \psi
\end{align*}
$$

(3)

Theorem 2
The energy (E) is a constant of the motion. Proof

$$
\begin{aligned}
E= & \frac{1}{2} \mu\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{\gamma}{r} \\
= & \frac{1}{2} \mu\left\{a^{2} \sin ^{2} \psi+b^{2} \cos ^{2} \psi\right\}\left(\frac{2 \pi}{r}\right)^{2}(1-\varepsilon \cos \psi)^{-2} \\
& -\frac{\gamma}{a}\left(1-\{\cos \psi)^{-1}\right. \\
= & \frac{1}{2} \mu a^{2}(2 \pi / r)^{2}\left\{1-\varepsilon^{2} \cos ^{2} \psi\right\}(1-\varepsilon \cos \psi)^{-2} \\
& -\frac{\gamma}{a}(1-\varepsilon \cos \psi)^{-1} \\
= & \left\{\frac{1}{2} \mu a^{2}\left(\frac{2 \pi}{r}\right)^{2}(1+\varepsilon \cos \psi)-\frac{\gamma}{a}\right\}(1-\varepsilon \cos \psi)^{-1}
\end{aligned}
$$

(1)

$$
=\left\{c_{1}+c_{2} \varepsilon \cos \psi\right\}(1-\varepsilon \cos \psi)^{-1}=E \text { (needs more!) }
$$

$$
\begin{aligned}
d x / d t & =(d x / d \psi)(d \psi / d t) \\
& =(-a \sin \psi)(2 \pi / T)(1-\varepsilon \cos \psi)-1 \\
d y / d t & =(d y / d \psi)(d \psi / d t) \\
& =(b \cos \psi)(2 \pi / T)(1-\varepsilon \cos \psi)-1 \\
r^{2}= & x^{2}+y^{2} \\
& =a^{2}\left\{(\cos \psi-\varepsilon)^{2}+\left(1-\varepsilon^{2}\right) \sin ^{2} \psi\right\} \\
& =a^{2}\left\{1-2 \varepsilon \cos \psi+\varepsilon^{2} \cos ^{2} \psi\right\} \\
& =a^{2}(1-\varepsilon \cos \psi)^{2}
\end{aligned}
$$

$$
\mathrm{b}^{2}=\left(1-\varepsilon^{2}\right) \mathrm{a}^{2}
$$

$$
\begin{array}{lr}
\mathrm{A}^{2}-\mathrm{B}^{2} & \mathrm{~A}+\mathrm{B} \\
-\mathrm{A}-\mathrm{B})^{2} & \mathrm{~A}-\mathrm{B}
\end{array}
$$

So, we have this ...

$$
\left\{\mathrm{C}_{1}+\mathrm{C}_{2} \varepsilon \cos \psi\right\}(1-\varepsilon \cos \psi)^{-1}=\mathrm{E}
$$

where

$$
\mathrm{C}_{2}=1 / 2 \mu \mathrm{a}^{2}(2 \pi / \mathrm{T})^{2}
$$

and

$$
C_{1}=C_{2}-\gamma / a .
$$

This must be a constant (E).

So, we require $C_{2} / C_{1}=-1$ and $C_{1}=E$.
Result
The theorem is true, and E is given by

$$
E=-\frac{Y}{2 a} .
$$

$$
\begin{aligned}
& C_{1}=C_{2}-\gamma / a=-C_{1}-\gamma / a \\
& C_{1}=-\gamma /(2 a) \\
& C_{2}=-C_{1}=\gamma /(2 a) \\
& \therefore \gamma /(2 a)=1 / 2 \mu a^{2}(2 \pi / T)^{2}
\end{aligned}
$$

Also, we find $\gamma /(2 \mathrm{a})=1 / 2 \mu \mathrm{a}^{2}(2 \pi / \mathrm{T})^{2}$;
$\therefore \quad \mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{a}^{3}}{\mathrm{GM}} \quad$ because $\gamma / \mu=G M$,

Example A. The orbit parameters of Halley's
comet are $a=17.9 \mathrm{AU}$ and $\varepsilon=0.97$. Plot of the orbit
of Halley's comet.
5 year intervals
(Not drawn to scale.)

Example B. Calculate the perihelion distance.

$$
r_{\min }=a(1-\varepsilon)=0.537 \mathrm{AU}
$$

Example C. Calculate the aphelion distance.

$$
r_{\max }=a(1+\varepsilon)=35.3 \mathrm{AU}
$$

Example D. Calculate the period of revolution.

$$
\mathrm{T}=2 \pi \mathrm{SQRT}\left(\mathrm{a}^{3} / \mathrm{GM}\right)=76 \text { years }
$$

Comet; equal time intervals

Kepler's second law : Equal areas in equal times.

1. Homework Assignment 14 is due Friday.
2. Final Exam is Tuesday December 12:

$$
\begin{aligned}
& \text { Final Exam: Tuesday, Dec } 122017 \\
& \text { 12:45pm - 2:45pm } \\
& \text { Room } 1420 \text { Biomedical \& Physical Sciences Bldg }
\end{aligned}
$$

3. The final exam will be based on Chapter 8.
4. You will be given an equation sheet, which will consist of Taylor's "Principal Equations" on pages 319 and 320.
5. To study for the exam: (i) read and understand Chapter 8; (ii) make sure that you are familiar with pages 319 and 320; (iii) review the chapter 8 lectures and homework.
