
Quantum Field Theories for 
Quantum Many-Particle Systems;

or

"Second Quantization"

Outline
1) Bosons and Fermions
2) N-particle wave functions ("first 

quantization")
3) The method of quantized fields 

("second quantization")
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Motivation

❏ Quantum field theory can be used as  a 
mathematical technique for describing 
many-particle systems with identical 
particles.

❏ There are many applications:

❏ atomic physics − many electron 
atoms

❏ nuclear physics − many protons 
and neutrons

❏ condensed matter physics − many 
atoms in quantum statistical 
mechanics; superfluids, metals, 
etc.

❏ This topic is not in Mandl and Shaw

❏ There are whole books devoted to this 
topic. I'm using Huang, Appendix A.



3. THE METHOD OF QUANTIZED FIELDS
also called "second quantization"
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Consider a system with N identical particles.
In the first-quantized theory,
the wave function is Ψ( q1 q2 q3 … qN ; t )
where qi = the coordinates of particle i .
The goal is to solve the time evolution,

Or, equivalently, find the energy eigenstates,



3a - The quantized field operator
/1/ In the second quantized theory we define a quantized 
field for the system of particles.
The field obeys a quantum postulate, which is called the 
equal-time commutation relations:

[ A , B ] = AB − BA                         { A , B } = AB + BA             

/2/ And we define the Hamiltonian operator H and the 
number operator Nop .
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Boson field
[ ψ(r) , ψ☨(r') ] = δ3(r − r') 
[ ψ(r) , ψ(r') ] = 0
[ ψ☨(r) , ψ☨(r') ] = 0

Fermion field
{ ψ(r) , ψ☨(r') } = δ3(r − r') 
{ ψ(r) , ψ(r') } = 0
{ ψ☨(r) , ψ☨(r') } = 0



The Hamiltonian in the second quantized theory is

H = K + Ω

K = − ħ2/(2m)  ∫ d3r  ψ☨(r) ∇2 ψ(r)  

Ω = ½  ∫ d3r1  ∫ d3r2  ψ☨(r1) ψ☨(r2) v12 ψ(r2) ψ(r1) 

where again v12 = v( r1 − r2 ).

The Number Operator in the second quantized theory is

Nop = ∫ d3r  ψ☨(r) ψ(r)  .

Note that ψ(r)  sort of resembles a wave function.
However, it is not a wave function − it is an operator in 
the Fock space.
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3b - The Big Theorem

The second quantized theory is equivalent in all 
predictions to the first quantized theory.

To prove this is not so easy, because the two 
theories look so different.

H1Q = 

H2Q = 

The structures of the two theories are different.
The trick is to prove that the predictions are the 
same.
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An important little theorem
For the second quantized theory ...

[ H , Nop] = 0

Proof

Consequences

● The number of particles is constant 
in time.

● An energy eigenstate is 
simultaneously an eigenstate of the 
number of particles.

● We can just fix N at the beginning of 
a calculation, and then forget it.
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2 Proof (for a fermion field)

[ H , Nop ] = [ T , Nop ] + [ V , Nop ]

Now calculate from the field anticommutators ...



The Big Theorem

THEOREM
Define the N-particle wave function from the 
second quantized theory by

This function obeys the Schroedinger equation of 
the first quantized theory; i.e.,

Corollary. The first and second quantized theories 
have the same energy eigenstates. (That goes a long 
way toward proving the big theorem.)
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Because of the commutation [or 
anticommutation] postulate for the 
field operator ψ(r) , the wave 
function Φ(r1 r2 … rN) has the correct 
exchange symmetry [or 
antisymmetry].



Proof of the THEOREM

We start with H |E,N〉= E |E,N〉.

Then 

E ΦEN ( r1 … rN ) = 

1/SQRT(N!) 〈0| ψ(r1) ψ(r2) … ψ(rN) H  |E,N〉

Remember, H|0〉= 0 ;  and 〈0|H = 0 .

Repeatedly commute H to the left until it acts on〈0|, at 
which point the result is 0.

First step: ψ(rN) H  = [ ψ(rN) , H ] + H ψ(rN) 
2nd step: ψ(rN−1) H  = [ ψ(rN−1) , H ] + H ψ(rN−1)
etc:  ψ(rj) H  = [ ψ(rj) , H ] + H ψ(rj )
last step:  ψ(r1) H  = [ ψ(r1) , H ] + H ψ(r1) =  [ ψ(r1) , H ] 
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Lemma ( you prove it )

[ ψ(r) , H ] = − ħ2/(2m) ∇2ψ(r)  + X(r) ψ(r) 

where

X(r) = ∫ d3r' ψ☨(r') v(r',r) ψ(r') .

Therefore ….

E ΦEN = − ħ2/(2m) ∑    ∇j
2 ΦEN (r1 … rN)

+ 1/SQRT(N!) ∑ 〈0|ψ(1)...ψ(j − 1)X(j)ψ(j)...ψ(N)|E,N〉

Now commute X(j) all the way to the left; 
note

〈0|X(j) = 0 and [ ψ(i) , X(j) ] = vij ψ(i) ψ(j) ;

N

j=1
N

j=1

… so the final result is

E ΦEN = 

− ħ2/(2m)  ∑  ∇j
2 ΦEN (r1 … rN)

+ ∑ vij  ΦEN (r1 … rN)

Q.E.D.

The energy states of the second 
quantized theory are the same as 
those of the first quantized theory; 
and the eigenfunctions are 
determined by
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Homework due Friday,  Feb. 3

Problem  13.
Prove that [Ω, N] = 0 where Ω is the two-particle 
interaction potential for identical fermions and N is the 
total number operator.

Problem 14.
Let  ψα(r,t)  be the field operator for spin-½ fermions, in the 
Heisenberg picture; α = spin coordinate.
Derive the field equation for ψ(r,t) in the form

iħ ∂ψ / ∂t =  F[ψ]

where F[ψ] is a functional―which may involve derivatives 
and integrals. Simplify the result as much as possible. 
[[Assume that  τ = − ħ2∇2 /2m and that v(r1,r2) is spin 
independent.]]


