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Mandl and Shaw reading assignments

Chapter 2 Lagrangian Field Theory
2.1 Relativistic notation
2.2 Classical Lagrangian field theory
2.3 Quantized Lagrangian field theory
2.4 Symmetries and conservation laws
Problems;  2.1  2.2  2.3  2.4  2.5

Chapter 3 The Klein-Gordon Field
3.1 The real Klein-Gordon field
3.2 The complex Klein-Gordon field
3.3 Covariant commutation relations
3.4 The meson propagator
Problems;  3.1  3.2  3.3  3.4  3.5
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Review of Lagrangian dynamics

For a single coordinate q(t) :

Lagrangian  L = L ( q, dq/dt ) ;

and Action  A = ∫t1
t2 L( q , dq/dt ) dt .

The equation of motion for q(t) comes from the 
requirement that δA = 0 (with endpoints fixed); i.e., the 
action connecting initial and final points is an extremum. 
Now consider a variation δq(t)

(Lagrange’s equation)

Forget about particles.

What are the fields?

What equations govern the fields?

★ We always start with a classical 
field theory.

★ The field equations come from 
Lagrangian dynamics.

Mandl and Shaw, Chapter 2
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Canonical momentum and the Hamiltonian

Example.  A particle in a potential...

… the same as classical particle dynamics.

Canonical Quantization 
(Dirac)

Rules to convert classical 
dynamics to a quantum theory:

❏ q and p become operators; 
they operate on the Hilbert 
space of physical states.

❏ [ q , p ] = i ħ 

❏ H is the generator of 
translation in time.
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Theorem.
H is the generator of translation in time 
for the quantum theory; prove it for the 
Heisenberg picture.
Suppose L = ½ M (dq/dt)2 − V(q).

Q.E.D.

So far, we have considered only one degree of 
freedom. Now consider a system with many 
degrees of freedom; { qi : i = 1 2 3 … N }

For many degrees of freedom…

q(t) ⟶ Q(t) ≡ { qi(t) ; i = 1 2 3 … i … N }

◾  L = L(Q, dQ/dt) ⇒  N Lagrange equations

for i = 1 2 3 … N

◾  Canonical momenta ...

◾  and Hamiltonian…

(which must be re-expressed
in terms of p1…pN and q1…qN.)
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EXAMPLE: THE LAGRANGIAN FOR
SCHROEDINGER WAVE MECHANICS

Note: A is real, but ψ(x) is complex.

We could write ψ = R + i I and treat R and I 
as independent "generalized coordinates".
Then require δA = 0 for any δR(x) and δI(x).

Easier, and equivalent, is to treat ψ and ψ* 
as independent generalized coordinates, 
and require δA = 0 for independent 
variations of δψ and δψ* .

Classical field theory  (suppress spin for now)

We replaced  

q(t) ⟶  { qi(t)  ;  i  ∈ Z } ; discrete
Now replace

q(t) ⟶  { ψ(x,t)  ;  x ∈ R3 } ; continuum
♦ ♦ ♦

Might try L = L(  ψ(x,t),  ∂ψ(x,t)/∂t ); but no.
L = ∫  ￡( ψ(x,t),  ∇ψ(x,t) , ∂ψ(x,t)/∂t ) d3x
∴ Lagrange’s equation becomes

this is the “classical field theory.”

  - - - an example of continuum dynamics.
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Canonical momenta

The Hamiltonian
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Lagrange’s Equations

Thus, the classical field equation is the 
Schroedinger equation.
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Quantization of the field
So far, this is the classical field theory.
Now...

Dirac’s canonical commutation relation
[ q , p ] = iħ is valid for Hermitian 
operators q and p. We need to modify that 
(because ψ is complex) to 

Therefore

Summary
[ ψ(x) , ψ(x’) ] = 0
[ ψ(x) , ψ☨(x’) ] = δ3(x − x’)   ;

or, use anticommutators for fermions;

This is precisely the NRQFT that we 
considered last week, but with a 1-body 
potential V(x) and without a 2-body 
potential V2(x,y).

Exercise: Figure out the Lagrangian that 
would include a 2-body potential. Hint: The 
Lagrangian must include a term quartic in 
the field.

Exercise: Verify that H is the generator of 
translation in time, in the quantum theory.
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Homework Problems due Fri Feb 10

Problem 16.
Equal time commutation relations.
We have, in the Schroedinger picture,

[ ψ(x) , ψ☨(x’) ] = δ3(x − x’)   , 
[ ψ(x) , ψ(x’) ] = 0 , etc.

(a ) Show that in the Heisenberg picture, this 
commutation relation holds at all equal times.
(b ) What is the commutation relation for 
different times?

Problem 17.
(a ) Do problem 2.1  in Mandl and Shaw.
(b ) Do problem 2.2  in Mandl and Shaw.
(c ) Do problem 2.3  in Mandl and Shaw.
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