Mandl and Shaw reading assignments

Chapter 2 Lagrangian Field Theory

2.1 Relativistic notation

2.2 Classical Lagrangian field theory
2.3 Quantized Lagrangian field theory
2.4 Symmetries and conservation laws
Problems; 2.1 2.2 2.3 2.4 2.5

Chapter 3 The Klein-Gordon Field
3.1 The real Klein-Gordon field
3.2 The complex Klein-Gordon field

3.3 Covariant commutation relations

3.4 The meson propagator
Problems; 3.1 3.2 3.3 3.4 3.5




Forget about particles.

What are the fields?

What equations govern the fields?

* We always start with a classical
field theory.

% The field equations come from
Lagrangian dynamics.

Mandl and Shaw, Chapter 2

Review of Lagrangian dynamics
For a single coordinate q(t) :

Lagrangian L =L (q, dqg/dt);

and Action A=[,*L(q,dg/dt)dt.

The equation of motion for q(t) comes from the
requirement that A = 0 (with endpoints fixed); i.e., the
action connecting initial and final points is an extremum.
Now consider a variation 3q(t)
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Canonical momentum and the Hamiltonian
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Example. A particle in a potential...
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... the same as classical particle dynamics.

Canonical Quantization

(Dirac)

Rules to convert classical
dynamics to a quantum theory:

d g and p become operators;
they operate on the Hilbert
space of physical states.
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[ His the generator of
translation in time.




Theorem.
H is the generator of translation in time

for the quantum theory; prove it for the
Heisenberg picture.

Suppose L =% M (dq/dt)* - V(q).
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So far, we have considered only one degree of
freedom. Now consider a system with many
degrees of freedom; {q,:i=123...N}

For many degrees of freedom...
qit) - QM) ={qt);i=123 ...i...N}

m [ =L(Q,dQ/dt) = N Lagrange equations
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® Canonical momenta ...

® and Hamiltonian...
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(which must be re-expressed
in terms of p,...p, and q;,...q.)
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Classical field theory (suppress spin for now)

We replaced

q) - {q;) ;1 €Z};
Now replace

qt) —» {y(x,t) ; x € R3}; continuum

XX

Might try L = L( w(x,t), dyp(x,t)/ot ); but no.
L=] £(w(x,1), Vu(x,t), oyx,/ot) d3x
.. Lagrange’s equation becomes

discrete
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(partial derivatives)

this is the “classical field theory.”

- - - an example of continuum dynamics.

EXAMPLE: THE LAGRANGIAN FOR
SCHROEDINGER WAVE MECHANICS
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Note: A is real, but y(x) is complex.

We could write y =R +iIand treat R and I
as independent "generalized coordinates".
Then require 6A = 0 for any dR(x) and 51(x).

Easier, and equivalent, is to treat y and y*
as independent generalized coordinates,
and require 5A = 0 for independent
variations of dy and dy™* .




Lagrange’s Equations
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Thus, the classical field equation is the
Schroedinger equation.
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Ouantization of the field
So far, this is the classical field theory.
Now...

Dirac’s canonical commutation relation
[g,pl=ir isvalid for Hermitian
operators g and p. We need to modify that
(because y is complex) to
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Summary

[v(X),yX)]=0
[vX), vy TX)]=8x-X) ;
or, use anticommutators for fermions;
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This is precisely the NRQFT that we
considered last week, but with a 1-body
potential V(x) and without a 2-body
potential V,(X,y).

Exercise: Figure out the Lagrangian that
would include a 2-body potential. Hint: The
Lagrangian must include a term quartic in
the field.

Exercise: Verify that H is the generator of
translation in time, in the quantum theory.
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Homework Problems due Fri Feb 10

Problem 16.
Equal time commutation relations.
We have, in the Schroedinger picture,
[v®),yTX)]=8x-x) ,
[v(X), y(x’)]=0, etc.
(a ) Show that in the Heisenberg picture, this
commutation relation holds at all equal times.
(b ) What is the commutation relation for
different times?

Problem 17.

(a) Do problem 2.1 in Mandl and Shaw.
(b ) Do problem 2.2 in Mandl and Shaw.
(c) Do problem 2.3 in Mandl and Shaw.




