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QED; and the Standard Model

We have calculated cross sections in 
lowest order perturbation theory.

Terminology: Born approximation; 
tree diagrams.

At this order of approximation QED 
(and the standard model) seem pretty 
good, compared to the data.

But now we want to compare theory 
and data to higher precision. So we 
need higher order calculations.

Higher order corrections should be 
small, because e2 = 4π /137 is small.

0 When we calculate higher order 
contributions, we encounter divergent 
integrals.

There are two kinds of divergence − 
infrared (IR) and ultraviolet (UV) − which 
have different origins.

The IR divergences occur because of 
massless fields: the photon field in QED 
and the gluon fields in QCD.

The UV divergences occur because of point 
like interactions. In QED,

￡int (x) = e ψ (x) γμ ψ(x) Aμ(x)

which implies interactions with arbitrarily 
large momentum.

After careful considerations, divergent 
quantities cancel ...
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Bremsstrahlung

(‘brems’=braking, ‘strahlung’=radiation)

In classical electrodynamics, when a 
charge undergoes acceleration, it 
radiates electromagnetic waves.

Now consider an electron scattering 
from an “infinitely massive charge”, Ze.

What is the radiation?

These topics are related to each other:

➔ Radiative corrections

➔ Divergences

➔ Renormalizations

⬇

Chapters 9 and 10

⬆

Today: Bremsstrahlung (Sec 8.8) and the 
Infrared Divergence (Sec 8.9).
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● Mott scattering

Suppose an electron scatters from a 
“heavy charge”, Ze.

E.g., a U nucleus has M ≈ 238 GeV >>> me .

We can treat the heavy charge in the limit 
M → ∞. In its rest frame it can absorb any 
amount of momentum without recoiling; 
there is no energy transfer (elastic 
scattering).
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● Bremsstrahlung     (Sections 8.8 & 8.9)

Now consider, in Q.E.D.,
e   +   Z   →   e’  +  Z  +  γ
pμ                  p’μ             kμ

There are two Feynman diagrams

We won’t calculate the full cross section, 
but we need to identify some parts of it.

Ma 

Mb 
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● The Bethe-Heitler cross section 
(1935) 

which they calculated from the Dirac 
equation and perturbation theory

Lorentz invariant phase space,

.where k = k n .

⇒ Do you see the Mott cross section?

⇒ Db = (p − k)2 − m2 = − 2 E k + 2 p . k

⇒ Da =  (p’ + k)2 − m2 = 2 E’ k − 2 p’. k

⇒ The cross section diverges as k → 0.

(Interpretation?
Soft photons are infinitely likely?)
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● The origin of the “Infrared 
Catastrophe”

There are IR divergences because the 
photon is massless.

The first sign of the IR divergences is the 
fact that dσBrems →  ∞ as ω → 0.

● The discussion in Section 8.8.

Why do MBrems and dσBrems diverge as
.ω → 0?      I.e., what is the mathematical 
reason?     As kμ → 0, the denominator of 
the electron propagator → 0.
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Comment.

The infrared problem is not a surprise, 
because classical electrodynamics has 
the same problem.

See J. D. Jackson, Classical 
Electrodynamics.

When a charged particle accelerates, it 
must radiate electromagnetic waves.

Figure 15.3 in Jackson...
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In classical electrodynamics, the e.m. wave can be 
subdivided into smaller and smaller amplitudes; energy 
is not quantized. But in the quantum theory, there cannot 
be a fraction of a photon.

2



● The solution of the infrared problem

Bloch and Nordsieck (1937)

Think about a real experiment.
What can actually be measured?

A real detector will have a photon energy 
resolution ≡ ΔE .

If Eγ < ΔE then the photon is 
unobservable.

We would observe two processes in the 
experiment:

(a) “elastic scattering”

.e + Z → e’ + Z + photons with ω < ΔE
(below the resolution)

This is not the ideal elastic cross section; 
it’s the actual measurement.

(b) “Bremsstrahlung”

.e + Z → e’ + Z + photons with ω > ΔE
(above the resolution)

This is not the ideal radiation rate; it’s 
the actual measurement.
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● (b) the actual measurement of 
Bremsstrahlung;

i.e., with Eγ > ΔE ; only counting 

observable photons
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So there is no divergence in the 
prediction for the observable 
Bremsstrahlung cross section.
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● (a) Fine, but what about the actual 
measurement of “elastic scattering”? 

i.e., the process (a), which must include 
photon emission with Eγ  < ΔE 
(unobservable soft photons)

That’s where the IR divergence occurs 
now. Isn’t that a real problem?

Yes, that is a real problem; but QED fixes 
it when we calculate the elastic cross 
section to order α2 .

dσ(a) = dσelastic + dσBrems(Eγ<ΔE)

dσ(a) ≈ dσ(LO)
elastic 

   + dσ(NLO)
elastic + dσ(LO)

Brems(Eγ<ΔE)

   + higher order 10

∎   dσ(LO)
elastic = the Mott cross section

∎   dσ(NLO)
elastic

  comes from the 
interference of

∎   dσ(LO)
Brems(Eγ<ΔE) can be approximated 

by soft photon production,

≈  dσ(LO)
elastic  α B

where

 α B = the soft photon emission factor

← O(α)

← O(α2)

← O(α3)
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But the integral over |k| is infinite. 
We need to temporarily assume 
that the photon has mass λ; later, 
take the limit λ → 0.
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● Analysis of B(λ)
(We’ll only do this calculation schematically.)

We have

Or, for unpolarized Bremsstrahlung,
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soft
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Bloch and Nordsieck:
Infrared divergences cancel out in “infrared-safe” predictions.
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ideal

❏ soft Bremsstrahlung is divergent as 
λ→0; (positive)

❏ ideal elastic scattering interference is 
divergent as λ→0; (negative)

❏ these must be added to make a 
physical prediction;

❏ the divergences cancel!

the prediction for  the experimental cross section 
(scattering with no observed photons) is not 
divergent as λ (the temporary  photon mass)  → 0.

We can handle IR divergences.
This is fairly easy in QED,
but quite difficult in QCD.


