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0 Ultraviolet (UV) divergences cancel 
after renormalization.

The parameters of the classical theory 
(mo and e0) must be "renormalized" in 
the quantum theory:

m = m0 + δm

e = Z3
1/2 e0

The renormalization constants (Z3 and 
δm) are divergent integrals. These will 
cancel other divergent integrals.

Who proved that it works? Many 
people contributed.  Schwinger, 
Feynman, Bethe, Dyson.



I . PREVIEW OF RENORMALIZATION

Ia. Principles of quantum field theory

We start with a field Lagrangian

 
(★)

￡ depends on two theoretical 
parameters,
. e0 = the bare charge (units: charge)
. m0= the bare mass (units: mass)

Then we quantize the fields.

From ￡we can calculate transition 
amplitudes, using perturbation theory in 
e0; i.e., Feynman diagrams.

For example, consider e-Z scattering,

There is a problem:
the loop integrals are UV divergent.
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Ib . Regularization

The loop integrals are divergent, because of the 
contributions from virtual states with infinite 
momentum (UV divergent).

The electron is a point; its radius = 0;
therefore the momentum transfer extends 
to  ∞; by the uncertainty principle

So the theory (★) is not a fundamental theory, 
but only an effective field theory. We don’t know 
what happens for infinite momentum transfer. 
Still, we expect that (★) will describe current 
experiments on electrodynamics.

Since we can’t calculate with infinity, we must 
regularize the integrals − make 'em finite. Then 
when the calculation is completed, we must 
remove the regularization.

Methods of regularization:

∎  Naive momentum cutoff

Replace ∫ d3p   by  ∫ d3p  Θ( Λ − |p| )

( Λ → ∞ )

∎  Pauli-Villars regularization

Replace  1 /(p2 − m2)     by

1 /(p2 − m2 ) − 1 /(p2 − Λ2)

( Λ → ∞ )

∎  Dimensional regularization
(‘tHooft and Veltman, 1972)

Replace  d4p/(2π)4    by   dDp/(2π)D

where D < 4 ; ( D → 4 )
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{Z1 , Z2 , Z3 , δm} can be calculated in the 
regularized theory, as power series in e0 ; 
for example,

Z3 = 1 + e0
2 ζ2 + e0

4 ζ4 + …

where ζ2 , ζ4 , … depend on m0 and Λ.

◼ Mass renormalization
We have m0 = "the bare mass" .
Let m = the physical electron mass.

(How is m determined?)

Now, the electron carries around some 
electromagnetic fields, which have energy.
We call this electromagnetic energy the electron 
"self-energy". Energy and mass are equivalent, so

The expansion coefficients μ2 , μ4 , μ6 , … are 
calculated in the regularized theory, so they depend 
on m0 and Λ (or 4 − D). 4

Ic. Renormalizations

The theory (★) depends on two parameters, e0 
and m0. But those are not physical observables. 
In particular, e0 is not the electron charge (e), 
and m0 is not the electron mass (m).

Our goal is to make predictions, e.g., cross 
sections, in terms of physical observables such 
as e and m.

So we need to "renormalize" m0 and e0 . That is, 
we must relate the "bare parameters" (m0and e0)
(which we use in [perturbation theory)  to the 
physical parameters (m and e).

Ultimately we’ll need to introduce three 
renormalization constants, Z1 , Z2 , Z3 ;
and, in addition, a mass renormalization 
constant,  δm. These will be defined during the 
next few lectures.
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◼ Charge renormalization
We have e0 = the "bare charge".
Let e = the physical charge.

(How is e determined?)

(There is no photon self-energy because 
gauge invariance requires      mγ = 0 .)

But e ≠ e0 because of radiative 
corrections.

We write e2 = e0
2 Z3 where

Z3 =  1 + e0
2 ζ2 + e0

4 ζ4 + e0
6 ζ6  …

The quantities ζ2 , ζ4 , ζ6 , … are 
calculated in the regularized theory, 
so they are functions of m0 and Λ (or 
4 − D).

Sec.9.2/ THE PHOTON SELF-ENERGY INSERTION

[ The name (photon self-energy) is possibly 
misleading. There is no photon mass, because of 
gauge invariance. A better name might be 
vacuum polarization insertion.]

Consider the lowest-order correction to 
the photon propagator,
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IIa . Definition of the full photon propagator

The full propagator is defined in the 
Heisenberg picture by 

Transform to momentum space,

We "can" calculate Dμν(q) in perturbation 
theory, using Wick's theorem;

Feynman diagrams

Wherever the bare (free) photon propagator 
occurs in a Feynman diagram, all possible 
insertions must also occur,  by Wick's theorem.

Παβ(q) denotes the sum of all 
"irreducible" insertions.
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Theorem. The full photon propagator Dμν
(q) is a geometric series in perturbation 
theory.

Proof ...

(I'm suppressing the Lorentz indices.)

Πμν(q) ( ~ gμν A(k2) )  denotes the sum of 

all "irreducible" photon line insertions.
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The lowest order photon line 
insertion, which is O(e0

2), is

 = ie0
2 Π[2]

μν(q) 

(I have restored the Lorentz indices.)

2 IIb . Calculate the O(e0
2) photon insertion

Being careful about signs and factors of i,

This integral is undefined because it is UV 
divergent. It must be regularized.

Power counting implies a quadratic divergence 
[p3dp /p2 = p dp ]
However, gauge invariance forces the quadratic 
divergence to be 0. (We'll verify that next time 
using dimensional regularization.)

But the integral does have a logarithmic UV 
divergence. (There is no IR divergence.)
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The O(e0
2) photon insertion, regularized

I'll use dimensional regularization 
(Section 10.3). But I won't provide all the 
details about dimensional regularization 
until next time.

Replace    ∫ d4p   by   ∫ dDp .

(Details next time)

Comment: Why the trace? Πμν has no 
spinor indices; so any spinor indices must 
be summed. Appeal to Wick's theorem.
What is the trace in D dimensions? 9

3 We have arrived at a regularized 
formula for the vacuum polarization 
tensor, and we'll evaluate it next 
time.

We'll obtain eqs (10.48) and 10.49)
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Lorentz invariance and gauge invariance
☸ Πμν(k) is a Lorentz tensor; so 

Πμν(k) = − gμν A(k2) + kμkν B(k2) .
☸ Πμν(k) is gauge invariant;
so it must obey  kμ Πμν(k) = 0.

(footnote page 231)
Therefore,

− kν A + k2 kν B = 0
B = A /k2  

Πμν(k) =  ( − gμν + kμkν/k
2 ) A(k2)

☸ Dμν(k) must have a pole at k2 = 0;
so we will write A(k2) = k2 Π(k2).

We'll obtain these results directly,
using dimensional regularization, next time.)

3 IId. Charge renormalization and vacuum 
polarization to order eo

2 .

Look at the integral (10.49) with D = 4.

The integral over qμ is only logarithmically 
divergent! By the geometric series, 

As usual, if we use Dμν(k) in a calculation with 
Feynman diagrams, we can drop the terms
    ∝  kμ kν     because kμ j

μ(k) = 0 by charge 
conservation .

Also,



Charge renormalization:

The propagator will always appear in the form

e0 Dμν(k) e0 ≡ Xμν  .

Now, the following expressions are accurate to 
order e0

4,
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(2) The finite* effect of vacuum 
polarization on the photon 
propagator is

*i.e., finite as Λ→∞ or as D →  4;
the convergent part

of vacuum polarization

X[2]
μν

 = 

−gμν (e
2/k2) [ 1 + e2 Πc

[2](k2) ]

 

 … To Be Continued  . 

Summary
(1) Charge renormalization, accurate 
to order e0

2  ...

e2 = e0
2 Z3

[2] ;
with

Z3
[2] = 1 + e0

2 Π[2](k2=0) .
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Born appx × [ 1 + e2 rad.correction]


