Chapter 9 : Radiative Corrections

- 9.1 Second order corrections of QED
- 9.2 Photon self energy
- 9.3 Electron self energy
- 9.4 External line renormalization
- 9.5 Vertex modification
- 9.6 Applications
- 9.7 Infrared divergence
- 9.8 Higher order radiative corrections
- 9.9 Renormalizability

Chapter 10 : Regularization

10.1 Math preliminaries10.2 Cut-off regularization10.3 Dimensional regularization10.4 Vacuum polarization10.5 Anomalous magnetic moment

Ultraviolet (UV) divergences cancel after renormalization.

The parameters of the classical theory $(m_0 \text{ and } e_0)$ must be "renormalized" in the quantum theory:

 $m = m_0 + \delta m$ $e = Z_3^{1/2} e_0$

The renormalization constants (Z_3 and δm) are divergent integrals. These will cancel other divergent integrals.

Who proved that it works? Many people contributed. *Schwinger, Feynman, Bethe, Dyson.*

I. PREVIEW OF RENORMALIZATION

Ia. Principles of quantum field theory

We start with a field Lagrangian

$$\mathcal{L} = \overline{\Psi}(i\overline{\partial}_{-}m_{0})\Psi - e_{0}\overline{\Psi}\mu\Psi$$
$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}(\partial_{\mu}A^{\mu})^{2}$$

(★)

${f \pounds}$ depends on two theoretical parameters,

- $e_0 =$ the bare charge (units: charge)
- $\tilde{m_0}$ = the bare mass (units: mass)

Then we quantize the fields.

From \pounds we can calculate transition amplitudes, using perturbation theory in e_0 ; i.e., Feynman diagrams.

For example, consider e-Z scattering,

There is a problem: the loop integrals are UV divergent.

Ib . Regularization

The loop integrals are divergent, because of the contributions from virtual states with infinite momentum (UV divergent).

The electron is a point; its radius = 0; therefore the momentum transfer extends to ∞ ; by the uncertainty principle

So the theory (\bigstar) is not a fundamental theory, but only an *effective field theory*. We don't know what happens for infinite momentum transfer. Still, we expect that (\bigstar) will describe current experiments on electrodynamics.

Since we can't calculate with infinity, we must *regularize* the integrals – *make 'em finite*. Then when the calculation is completed, we must remove the regularization.

Methods of regularization:

■ Naive momentum cutoff

Replace $\int d^{3}p~$ by $\int d^{3}p~~\Theta(~\Lambda-\mid \pmb{p}\mid$)

($\Lambda \rightarrow \infty$)

 $(\Lambda \rightarrow \infty)$

Pauli-Villars regularization Replace $1/(p^2 - m^2)$ by $1/(p^2 - m^2) - 1/(p^2 - \Lambda^2)$

Dimensional regularization ('tHooft and Veltman, 1972) Replace $d^4p/(2\pi)^4$ by $d^Dp/(2\pi)^D$ where D < 4 ; (D \rightarrow 4)

Ic. Renormalizations

The theory (\bigstar) depends on two parameters, e₀ and m₀. But those are not physical observables. In particular, e₀ is not the electron charge (e), and m₀ is not the electron mass (m).

Our goal is to make predictions, e.g., cross sections, in terms of physical observables such as e and m.

So we need to "renormalize" m_0 and e_0 . That is, we must relate the "bare parameters" (m_0 and e_0) (*which we use in [perturbation theory*) to the physical parameters (m and e).

Ultimately we'll need to introduce three renormalization constants, Z_1 , Z_2 , Z_3 ; and, in addition, a mass renormalization constant, δm . These will be defined during the next few lectures.

 $\{Z_1^{}\,,\,Z_2^{}\,,\,Z_3^{}\,,\,\delta m\}$ can be calculated in the regularized theory, as power series in $e_0^{}\,;$ for example,

 $Z_3 = 1 + e_0^2 \zeta_2 + e_0^4 \zeta_4 + \dots$

where ζ_2 , ζ_4 , \ldots depend on \boldsymbol{m}_0 and $\boldsymbol{\Lambda}.$

Mass renormalization

We have $m_0 =$ "the bare mass" . Let m = the physical electron mass.

(How is m determined?)

Now, the electron carries around some electromagnetic fields, which have energy. We call this electromagnetic energy the electron "self-energy". Energy and mass are equivalent, so

$$\frac{m}{m_0} = 1 + \frac{\delta m}{m_0} = 1 + e_0^2 \mu_2 + e_0^4 \mu_4 + \dots$$

The expansion coefficients μ_2 , μ_4 , μ_6 , ... are calculated in the regularized theory, so they depend on m₀ and Λ (or 4 – D).

Charge renormalization
 We have e₀ = the "bare charge".
 Let e = the physical charge.

(How is e determined?)

(There is no photon self-energy because gauge invariance requires $m_y = 0$.)

But $e \neq e_0$ because of radiative corrections.

We write $e^2 = e_0^2 Z_3$ where $Z_3 = 1 + e_0^2 \zeta_2 + e_0^4 \zeta_4 + e_0^6 \zeta_6 \dots$

The quantities ζ_2 , ζ_4 , ζ_6 , ... are calculated in the regularized theory, so they are functions of m₀ and Λ (or 4 - D).

Sec.9.2/ THE PHOTON SELF-ENERGY INSERTION

[The name (*photon self-energy*) is possibly misleading. <u>There is no photon mass, because of</u> <u>gauge invariance.</u> A better name might be *vacuum polarization insertion.*]

Consider the lowest-order correction to the photon propagator,

IIa . Definition of the full photon propagator

The full propagator is defined *in the Heisenberg picture by*

$$\dot{z} D_{uv} (x-y) = \langle \Phi_0 | T A_{\mu}(x) A_{\nu}(y) | \Phi_0 \rangle$$

Transform to momentum space,

$$D_{\mu\nu}(x-y) = \int \frac{d^{4}k}{(2\pi)^{4}} D_{\mu\nu}(k) e^{-ik \cdot (x-y)}$$

We "can" calculate $D_{\mu\nu}(q)$ in perturbation theory, using Wick's theorem;

Feynman diagrams

D (k) = min +

Wherever the bare (free) photon propagator occurs in a Feynman diagram, all possible insertions must also occur, by Wick's theorem.

 $\Pi_{\alpha\beta}(q)$ denotes the sum of all "irreducible" insertions.

The sum of all "irreducible" 1 y sertions

D (k) = min +

<u>Theorem</u>. The *full* photon propagator $D_{\mu\nu}$ (q) is a geometric series in perturbation theory.

Proof ...

(I'm suppressing the Lorentz indices.) $D(k) = D_o(k) + D_o(k) A(k) D_o(k)$ + D. A D. A D. + D, A D, A D, A D, + = D_[1-AD_7]; recall D_(k)=-1/k2 $= \frac{-1}{k^2} \left[1 + \frac{A'}{k^2} \right]^{-1} = \frac{-1}{k^2 + A(k^3)}$

 $\Pi_{\mu\nu}(q) (\sim g_{\mu\nu} A(k^2))$ denotes the sum of all "irreducible" photon line insertions.

The lowest order photon line insertion, which is $O(e_0^{-2})$, is

 $= ie_0^2 \Pi^{[2]}_{\mu\nu}(q)$

(I have restored the Lorentz indices.)

IIb . Calculate the $O(e_0^2)$ photon insertion

Being careful about signs and factors of i,

 $2e_{v}^{2}TT_{\mu\nu}^{(2)}(k) = (-1)(ie_{v})^{2}\int \frac{d^{\mu}r}{(2\pi)^{4}}$ Tr { 8 1 × + K-m 8 2 7-m }

This integral is undefined because it is UV divergent. It must be regularized.

Power counting implies a quadratic divergence $[p^{3}dp /p^{2} = p dp]$

However, gauge invariance forces the quadratic divergence to be 0. (We'll verify that next time using dimensional regularization.)

But the integral does have a *logarithmic* UV divergence. (There is no IR divergence.)

The O(e₀²) photon insertion, *regularized*

I'll use dimensional regularization (Section 10.3). But I won't provide all the details about dimensional regularization until next time.

Replace $\int d^4p$ by $\int d^Dp$.

(Details next time)

 $e_{0}^{2} \prod_{\mu\nu}^{[2]}(k) = i e_{0}^{2} \int \frac{d^{D} k}{(2\pi)^{D}} \mu^{4-D}$ $\frac{Tr \{ \chi_{u} (\# + t_{u} + m_{0}) \chi_{v} (\# + m_{0}) \}}{[(p+k)^{2} - m_{v}^{2} + i\epsilon](p^{2} - m_{v}^{2} + i\epsilon)}$

Comment: Why the trace? $\Pi \mu v$ has no spinor indices; so any spinor indices must be summed. Appeal to Wick's theorem. What is the trace in D dimensions?

We have arrived at a regularized formula for the vacuum polarization tensor, and we'll evaluate it next time.

We'll obtain eqs (10.48) and 10.49)

 $\Pi_{\mu\nu}^{[2]}(k) = \left(k_{\mu}k_{\nu} - k^{2}g_{\mu\nu}\right)\Pi^{[2]}(k^{2}) \quad (0,48)$ (10.49) $\Pi^{[7]}(k^2) = \mathcal{M}^{4-D} \frac{2}{(2\pi)^{D/2}} \left[\left(2 - \frac{D_2}{2} \right) \int_{0}^{1} \frac{z(1-z) dz}{\left[k^2 z (1-z) - w_0^2 \right]} \frac{2 - D_2}{2} \right]$

Lorentz invariance and gauge invariance $\oplus \Pi_{\mu\nu}(k)$ is a Lorentz tensor; so $\Pi_{\mu\nu}(k) = -g_{\mu\nu} A(k^2) + k_{\mu}k_{\nu} B(k^2) .$ $\Pi_{\mu\nu}(k)$ is gauge invariant; so it must obey $k^{\mu} \prod_{\mu\nu}(k) = 0$. (footnote page 231) Therefore, $-k_{y}A + k^{2}k_{y}B = 0$ $\mathbf{B} = \mathbf{A} / \mathbf{k}^2$ $\Pi_{uv}(k) = (-g_{uv} + k_{u}k_{v}/k^{2}) A(k^{2})$ $\textcircled{D}_{\mu\nu}(k)$ must have a pole at $k^2 = 0$; so we will write $A(k^2) = k^2 \Pi(k^2)$.

We'll obtain these results directly, using dimensional regularization, next time.) IId. Charge renormalization and vacuum polarization to order e_0^2 .

Look at the integral (10.49) with D = 4.

The integral over q^{μ} is only logarithmically divergent! By the geometric series,

$$D_{uv}(k) = \frac{-g_{uv}}{k^2 [1 - Tr(k^2)]} + 2k_u k_v$$

As usual, if we use $D_{\mu\nu}(k)$ in a calculation with Feynman diagrams, we can drop the terms $\propto k_{\mu}k_{\nu}$ because $k_{\mu}j^{\mu}(k) = 0$ by charge conservation.

Also,

$$D_{nv}(k) = \frac{-g_{nv}}{k^2 \left[1 - e_0^2 \prod^{2} (l_0^2) \right]}$$

Charge renormalization:

The propagator will always appear in the form

$$e_0 D_{\mu\nu}(k) e_0 \equiv X_{\mu\nu}$$

Now, the following expressions are accurate to order e_0^{4} ,

$$\begin{split} |-e_{b}^{2}\Pi^{[2]}(h^{2}) \\ &= |-e_{b}^{2}\Pi^{[2]}(h) - e_{b}^{2}\Pi^{[2]}(h^{2}) + e_{b}^{2}\Pi^{[2]}(h) \\ &= |-e_{b}^{2}\Pi^{[2]}(h) - e_{b}^{2}\Pi^{(1)}(h^{2}) \\ &= |-e_{b}^{2}\Pi^{[2]}(h) - e_{b}^{2}\Pi^{(1)}(h^{2}) \\ &= \Pi^{[2]}(h^{2}) = \Pi^{[2]}(h^{2}) - \Pi^{[2]}(h) \\ &= (|-e_{b}^{2}\Pi^{(2)}(h)) \Big(|-e_{b}^{2}\Pi^{[2]}(h^{2}) \Big) + O(e_{b}^{4}) \\ &= (|-e_{b}^{2}\Pi^{(2)}(h)) \Big(|-e_{b}^{2}\Pi^{[2]}(h^{2}) \Big) + O(e_{b}^{4}) \\ &= (|-e_{b}^{2}\Pi^{(2)}(h)) \Big(|-e_{b}^{2}\Pi^{[2]}(h^{2}) \Big) + O(e_{b}^{4}) \\ &= (|-e_{b}^{2}\Pi^{(2)}(h)| \Big(|-e_{b}^{2}\Pi^{[2]}(h^{2}) \Big) + O(e_{b}^{4}) \\ &= (|-e_{b}^{2}\Pi^{(2)}(h)| \Big(|-e_{b}^{2}\Pi^{[2]}(h^{2}) \Big) + O(e_{b}^{4}) \\ &= (|-e_{b}^{2}\Pi^{(2)}(h^{2})| \Big(|-e_{b}^{2}\Pi^{[2]}(h^{2}) \Big) + O(e_{b}^{4})$$

$$So \quad X_{\mu\nu} = \frac{e_{o}^{2}(-g_{\mu\nu})}{k^{2}\left[1 - e_{o}^{2}\pi^{c_{2}}(o)\right]\left[1 - e_{o}^{2}\pi^{c_{2}}(k^{2})\right]}$$

$$X_{\mu\nu} = \frac{e^{2}(-g_{\mu\nu})}{k^{2}\left[1 - e_{o}^{2}\pi^{c_{2}}(k^{2})\right]}$$

$$C_{\mu}AQGE RENORMALIZATION$$

$$e^{2} = e_{o}^{2}Z_{s} \quad when \quad Z_{s} = \frac{1}{1 - e_{o}^{2}\pi^{c_{2}}(o)}$$

$$r \quad Z_{s} = 1 + e_{o}^{2}\pi^{c_{2}}(o)$$

$$VACUUM POLARIZATION function$$

$$D_{\mu\nu}^{(R)}(k) = \frac{(-g_{\mu\nu})}{k^{2}\left[1 - e^{2}\pi^{c_{2}}(k^{2})\right]}$$

$$on \quad -\frac{g_{\mu\nu}}{\mu^{2}}\left[1 + e^{2}\pi^{c_{2}}(k^{2})\right]$$
11

Summary

(1) Charge renormalization, accurate to order e_0^{2} ...

$$e^2 = e_0^2 Z_3^{[2]}$$

with

$$Z_3^{[2]} = 1 + e_0^2 \Pi^{[2]}(k^2=0)$$

(2) The finite* effect of vacuum polarization on the photon propagator is

*i.e., finite as $\Lambda \rightarrow \infty$ or as $D \rightarrow 4$; the convergent part of vacuum polarization

 $X^{[2]}_{\mu\nu} = -g_{\mu\nu} (e^2/k^2) [1 + e^2 \Pi_c^{[2]}(k^2)]$ Born appx × [1 + e² rad.correction]