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0 Some integral identities

● Euclidean momentum space,

    ∫                         

= π2 { Λ4 /(Λ2−s)2 ln [Λ2/s] − Λ2/(Λ2−s)}

● Spacetime with dimension D,

 ∫ 

= i πD/2 (−1)n Γ(n−D/2)/Γ(n) s(D/2 − n)

The gamma function, Γ(z);
In the limit  z → 0 ,     

Γ(z) ～ 1/z − γ + O(z)

d4K
(K2+s)2

Λ2

(K2+Λ2)

dDk
(k2 − s  + i ε)n

Euler constant  γ = 0.5772…  



Pauli-Villars regularization

Suppose we encounter this integral, 

      I =    ∫  f(k)  d4k                        

where the factor 1/(k2 − m2 +iε ) 
comes from some propagator.

And the problem is that the 
integrand does not decrease fast 
enough as k increases, giving a 
divergent integral like   ∫ ∞ dk /k ,

which is UV divergent 
(logarithmically).

1
k2 − m2 + iε 

Replace

by

➔ For finite Λ, the integral is finite.
(That's regularization.) 

➔ At the end of the calculation we will 
take the limit  Λ→ ∞.  (For Λ→ ∞, the 
replacement ☆ reverts to the original 
integrand.)

➔ Of course I  will diverge as Λ→ ∞ ; 
but hopefully the divergence will 
cancel some other divergence due to 
renormalization.

1                    1
k2 − m2           k2 − Λ2

2

1 1
k2 − m2

− ☆
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Dimensional regularization
('tHooft and Veltman, 1972)

Again,

I =    ∫  f(k)  d4k                        

and the 4D integral is undefined 
because it is UV divergent.

Change d4k into dDk where D < 4.

That is the regularized theory!

So, do the calculations in the 
regularized theory (i.e., reduced 
dimensions);

and at the end, take the limit D → 4. 

Write D = 4 − η, and finally let η → 0.

It's a brilliant idea, if you can figure out how 
to do an integral over a non-integer number 
of dimensions.

For example, what does it mean to say
D =3.9 ?  Or, what is D = 3.9 + 0.1 i ?

Here is the definition of integration over D 
dimensions:

∫ 

= i πD/2 (−1)n Γ(n−D/2)/Γ(n) s(D/2 − n)

and obvious generalizations.
The R.H.S. is defined for all D (except D = 
2n); it's sort of like analytic continuation ....

1

1
k2 − m2 + iε 

dDk
(k2 − s  + i ε)n



Review

The O(e0
2) photon self-energy insertion* is

* better terminology :
"vacuum polarization insertion"
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Calculate the vacuum polarization tensor, 
regularized
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Put everything together ... Now take the limit D  →  4.
Let D = 4 − η  and   η →  0 .

Asymptotic expansions
As x  →  0,

Γ(x) 〜 1/x − γ + (x/12)(6γ2 +π2) + …
Ax  〜 1 + x ln A + ½ x2 (ln A)2 + …

Γ(η/2)  〜  2/η  − γ        the UV divergence!

Calculate the limit carefully… 
Euler constant  γ =
lim {1 + ½ + ⅓ + ¼ + … +1/N − ln(N)} = 0.5772
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Now take the limit η = 4 − D → 0.

Π[2](k2) =     Γ(η /2) F(η)

 〜 (2/η − γ ) ( F(0) + η F'(0) )

〜 (2/η) F(0) −  γ F(0)  + 2 F'(0) + O(η)

             divergent but constant;       convergent

F(0) =  f(4) / (4π)2  ∫0
1 2z (1 − z) dz

= 4 / (4π)2  2 ( 1 − ½)  = 1 / (4π2)

F'(0) = (dF /dη) |η=0

=  carefully ...

And F'(0) = 

ln(μ) F(0) − f'(4) F(0)/4 + ½ ln(4π) F(0)

+ f(4)/(4π)2   ∫0
1 [−½ ln(Δ2)] 2z(1-z) dz

We'll write it this way:

Π[2](k2) = Π[2](k2=0)  +  ΠC
[2](k2)

Π[2](k2=0) = { 2/η − γ − 2f'(4)/4 + ln(4π)

+  ln ( μ2 / m0
2 )  } × (1/4π2) 

4 F(η) =μη  f(4-η) / (4π)2--η/2 ∫  (Δ2)--η/2 2z(1-z)dz

1/ (4π2) Δ2 = m0
2 − z (1 − z)  k2 
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Charge renormalization to O(e0
2) from the 

vacuum polarization insertion to the photon 
propagator.

e2 = Z3 e0
2

Z3 = 1 + e0
2 Π[2](k2=0)   + O(e0

4)

Z3 = 1 + e0
2 (                 + Constant)

where η = 4 − D → 0.

Or, for Pauli Villars regularization,

replace    1/ η   by   ln (Λ2 / m0
2 ) 

where Λ → ∞ .

1      1
2π2   η

Naively,
we could say Z3 =  ∞ ;
which would require e0 = 0.

But in reality, QED is an "effective 
field theory", valid for energies 
below the large cutoff Λ (? ~ 
mPlanck
~ 1019 GeV ?).

We do not know the theory for 
higher energies.

So  in reality e0
2 ln ( Λ2 / m0

2 ) is a 
small number; even though we 
take the limit Λ → ∞ when we 
calculate the convergent part.
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Why we tolerate "infinite renormalization"

Consider:
Let Λ = the Planck mass,
Λ  = (ħc/GNewton)

1 /2   =    2.2 × 10-8 kg
me = 9.1 × 10-31  kg
Z3

[2] ～ 1 + α ( log(Λ /m) + C )
= 1 + 1/137 × ln(0.2 x 1023)
= 1 + 0.37 

Viewing QED as an effective theory,
the charge renormalization is not large.
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Paul Dirac quote: 
"Renormalization is just a stop-gap 
procedure. There must be some 
fundamental change in our ideas, 
probably a change just as fundamental 
as the passage from Bohr's orbit theory 
to quantum mechanics. When you get 
a number turning out to be infinite 
which ought to be finite, you should 
admit that there is something wrong 
with your equations, and not hope that 
you can get a good theory just by 
doctoring up that number."

Any ideas?
� Physics beyond the S. M.

(probably not radical enough)

� Quantum gravity
� String theory, 10 dimensions, etc.
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The physical consequences of the convergent 
part of the vacuum polarization diagram

ΠC
[2](k2) = Π[2](k2) − Π[2](k2=0) 

ΠC
[2](k2) = 2 (1/4π2)  ∫0

1 [−½ ln(Δ2/m0
2)]

2z(1-z) dz

where

Δ2/m0
2 = 1 − z(1 − z) k2/m0

2 .

That is,

e2ΠC
[2](k2) =  − (2α/π)  ∫0

1 dz z (1 − z)

ln (1 − k2 z (1−z) /m0
2)

(9.68)

Read Section 9.6.2

➔ the Lamb shift (1947);
The Dirac equation has E(2s1/2) = E(2p1/2).
The Lamb shift is ΔE/ħ.  The vacuum 
polarization contributes 27 MHz to the Lamb 
shift; the total Lamb shift is 1028 MHz.

➔ "vacuum polarization"
The QED interaction is stronger at short 
distances because polarization of the virtual 
electron-positron pairs screens the charges.

➔ But in QCD, the interaction is weaker at short 
distances, which is called "asymptotic 
freedom". Gluon fluctuations anti-screen the 
color charges.
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Homework Problems
due Friday April 28

30. Mandl and Shaw problem 9.2.
31. Mandl and Shaw problem 10.2.
32. Mandl and Shaw problem 10.3.
33. For the electron, e and m are known to 
high accuracy. Explain how e and m are 
measured.
34. Show that the QED interaction is 
stronger at short distances (or, large 
momentum transfer) due to vacuum 
polarization. 13
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