Homework Problems due Friday February 3

Problem 11.

Three identical spin-0 bosons are in a harmonic oscillator potential. The total energy is $9/2 \ \hbar \omega$. From this information alone, write an expression for the 3-particle wave function, $\Psi(x_1, x_2, x_3)$.

Problem 12.

Consider two identical spin-0 bosons moving in free space, and interacting with each other. Approximate the 2-particle wave function by products of free waves with momenta $\mathbf{p_1}$ and $\mathbf{p_2}$.

- (a) Calculate the expectation value of the two-body potential energy V(\mathbf{x}_1 , \mathbf{x}_2).
- (b) Now suppose $V(\mathbf{x}_1, \mathbf{x}_2) = U(\mathbf{x}_1 \mathbf{x}_2)$. Express the result of (a) in terms of the Fourier transform of $U(\mathbf{r})$.

Problem 13.

Prove that $[\Omega, N] = 0$ where Ω is the two-particle interaction potential for identical fermions and N is the total number operator.

Problem 14.

Let $\psi_{\alpha}(\mathbf{r},t)$ be the *field operator* for spin-½ fermions, in the Heisenberg picture; α = the spin index.

Derive the field equation for $\psi(\mathbf{r},t)$ in the form

$$i\hbar \partial \psi / \partial t = F[\psi]$$

where $F[\psi]$ is a functional—which may involve derivatives and integrals. Simplify the result as much as possible. [[Assume that $\tau = -\hbar^2 \nabla^2/2m$ and that $v(\mathbf{r_1},\mathbf{r_2})$ is spin independent.]]

Problem 15.

In the second quantized theory of 2 identical fermions, calculate

$$\langle 0 \,|\, \, c_{_{\alpha}} \,\, c_{_{\beta}} \,\, \psi \, \dagger \, (\boldsymbol{r_{_{1}}}) \,\, \psi \, \dagger \, (\boldsymbol{r_{_{2}}}) \,\, | \, 0 \rangle$$

where c_{α} is the annihilation operator for a particle with wave function $u_{\alpha}(\mathbf{r})$.