The Theory of the Photon
Planck, Einstein → the origins of quantum theory
Dirac → the first quantum field theory

The equations of electromagnetism in empty space (i.e., no charged particles are present); using gaussian units,

$$\nabla \cdot \vec{E} = 0 \quad \text{and} \quad \nabla \times \vec{E} = -\frac{1}{C} \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0 \quad \text{and} \quad \nabla \times \vec{B} = \frac{1}{C} \frac{\partial \vec{E}}{\partial t}$$

$$U = \frac{1}{2} \int (E^2 + B^2) d^3x$$

We can solve the field equations, by introducing potentials $\varphi(\mathbf{x},t)$ and $\mathbf{A}(\mathbf{x},t)$...

Then:

$$\nabla \cdot \vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} - \nabla \phi \quad \text{and} \quad \vec{B} = \nabla \times \vec{A}$$
Then:

$$\nabla \cdot \vec{E} = -\frac{1}{c} \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) - \nabla^2 \phi = 0 \quad \text{is required}$$

$$\nabla \times \vec{E} \neq \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = -\frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \vec{A}) + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \vec{A})$$

$$= 0 \quad \text{automatically}$$

$$\nabla \cdot \vec{B} = \nabla \cdot (\nabla \times \vec{A}) = 0 \quad \text{automatically}$$

$$\nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$

$$+ \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \phi) = 0$$
As required

W.L.O.G. we can also require $\nabla \cdot \mathbf{A} = 0$, which is called the *Coulomb gauge condition*.

Then $\Phi = 0$ and

$$\frac{1}{C^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla}^2 \vec{A} = 0 \quad (wave equation)$$

Thus, A(x,t) is an infinite set of harmonic oscillators.

Or, I should say these are *coupled* oscillators; different points *x* are coupled.

And how do we calculate coupled oscillations?

We use the *normal modes*.

"Normal modes" of the electromagnetic field

The normal modes of the electromagnetic field vectors are transverse plane waves. Try $\mathbf{A}(\mathbf{x},t) = \mathbf{C} \mathbf{\epsilon} e^{i(\mathbf{k}.\mathbf{x} - \omega t)}$ $\mathbf{\epsilon}$ is a unit vector called the polarization vector

- The Coulomb gauge condition requires $\mathbf{k} \cdot \mathbf{\epsilon} = 0$; ie, the waves are transverse.
- The wave equation requires $ω = c | \mathbf{k} |$, which is called the *dispersion relation*.

The wave velocity is

$$\frac{\lambda}{T} = \frac{2\pi/k}{2\pi/\omega} = \frac{\omega}{k} = c$$

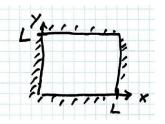
(This is the starting point for the theory of special relativity.)

"Normal modes"; or, better, plane wave solutions

The general solution of the field equation is a superposition of normal modes plane waves,

$$\bar{A}(\bar{x},t) = \sum_{K} \sum_{\sigma=1}^{2} \hat{\epsilon} \left[C(\bar{k},\sigma) e^{i(\bar{k}\cdot\bar{x}-\omega t)} + C^{*}(\bar{k},\sigma) e^{-i(\bar{k}\cdot\bar{x}-\omega t)} \right]$$
where $\omega = ck$
and $\bar{k}, \bar{\epsilon}_{1}, \bar{\epsilon}_{2}$ form an orthogonal triad $\bar{\epsilon}_{2}$

Infinite space, or finite? For normalizability, we often imagine a finite space, with dimensions $L \times L \times L$, and with periodic boundary conditions; and finally take the limit $L \rightarrow$ infinity.



Then for the plane waves, $\mathbf{k} = (2\pi/L) \mathbf{n}$ where \mathbf{n} is integer valued.

Volume $\Omega = L^3$.

Infinite volume limit : $\sum_{\mathbf{k}} \rightarrow \Omega \int d^3k /(2\pi)^3$

So far, I have only discussed the wave solutions of the field equations. Where are the photons?

Following Dirac, we replace the c-numbers, $c(\mathbf{k},\sigma)$ and $c^*(\mathbf{k},\sigma)$,

by annihilation and creation operators,

$$c(\mathbf{k},\sigma) \to a_{\mathbf{k}\sigma}$$
 and $c^*(\mathbf{k},\sigma) \to a \dagger_{\mathbf{k}\sigma}$

with

$$[a_{\mathbf{k}\sigma}, a \dagger_{\mathbf{k}\sigma}] = 1$$

$$[a_{\mathbf{k}\sigma}, a \dagger_{\mathbf{k}'\sigma'}] = 0 \text{ for } \{\mathbf{k}', \sigma'\} \neq \{\mathbf{k}, \sigma\}$$

i.e.,
$$[a_{k\sigma}, a\dagger_{k'\sigma'}] = \delta_{k,k'}\delta_{\sigma\sigma'}$$

All other commutators are 0; e.g., $[a_{k\sigma}, a_{k'\sigma'}] = 0$.

So we write

$$\mathbf{A}(\mathbf{x},t) = \sum_{\mathbf{k}} N_{\mathbf{k}} \varepsilon_{\mathbf{k}\sigma} \left\{ a_{\mathbf{k}\sigma} e^{i(\mathbf{k}.\mathbf{x} - \omega t)} + a \dagger_{\mathbf{k}\sigma} e^{-i(\mathbf{k}.\mathbf{x} - \omega t)} \right\}$$

and that is the quantized electromagnetic field, in the Heisenberg picture. (Mandl and Shaw, 1.38)

This is supposed to be a quantum theory. Then there must be a Hamiltonian (= the generator of translation in time).

What is the Hamiltonian? (Homework Problem 3)

The normalization factor

$$N_k$$

$$H = \sum \hbar \omega \ a \dagger_{k\sigma} a_{k\sigma} + const.$$

$$N_k = Sqrt[\hbar c^2 / (2\Omega\omega)]$$
 (remember, $\omega = ck$)

which is necessary so that $H = 1/2 \int (E^2 + B^2) d^3x$.

<u>Pictures</u> Here is something that we need for quantum field theory. You have already studied it, but we'll go over it again.

- I All predictions in quantum theory are based on matrix elements; e.g., $O_{\alpha\beta} = \langle \alpha \mid O \mid \beta \rangle$.
- Matrix elements may depend on time. But what depends on time—the states or the observables?
- In the Schroedinger picture, the states depend on time, but the observables do not depend on time.
- In the Heisenberg picture, the states do not depend on time, but the observables depend on time.
- **I** *Essential:* $\langle \alpha, t \mid O \mid \beta, t \rangle_{Schr.} = \langle \alpha \mid O(t) \mid \beta \rangle_{Heis.}$

(Homework Problem 4)

(Needed for Homework Problem 4)

Time dependence in the Schroedinger picture

i
$$\hbar$$
 ($\partial/\partial t$) | α , t \rangle = H | α , t \rangle ;
or,
| α , t \rangle = exp(-i H t/ \hbar) | α , 0 \rangle .

Time dependence in the Heisenberg picture

$$\exp(+i H t /\hbar) \mathbf{O} (0) \exp(-i H t /\hbar) = \mathbf{O} (t) ;$$
 or,
$$-i \hbar (\partial/\partial t) \mathbf{O} (t) = [H, \mathbf{O} (t)].$$

Homework due Friday, January 20 ...

<u>Problem 3.</u> The quantum field for the free electromagnetic field $\mathbf{A}(\mathbf{x},t)$ in the Heisenberg picture is written as an expansion in plane waves, with the annihilation and creation operators, $\mathbf{a}_{\mathbf{k}\sigma}$ and a $\dagger_{\mathbf{k}\sigma}$.

- (a) Let $H = \sum \hbar \omega$ a $\dagger_{k\sigma} a_{k\sigma}^{\dagger} + \text{const.}$ Show that $\mathbf{A}(\mathbf{x},t)$ obeys the Heisenberg equation of motion.
- (b) Show that $H = 1/2 \int (E^2 + B^2) d^3x$.

Problem 4.

Start with the equations for time dependence in the Schroedinger and Heisenberg pictures.

Prove
$$\langle \alpha, t \mid O \mid \beta, t \rangle_{Schr.} = \langle \alpha \mid O(t) \mid \beta \rangle_{Heis.}$$