Mandl and Shaw reading assignments

Chapter 2 Lagrangian Field Theory
2.1 Relativistic notation ✔
2.2 Classical Lagrangian field theory ✔
2.3 Quantized Lagrangian field theory
2.4 Symmetries and conservation laws
Problems; 2.1 2.2 2.3 2.4 2.5

Chapter 3 The Klein-Gordon Field
3.1 The real Klein-Gordon field
3.2 The complex Klein-Gordon field
3.3 Covariant commutation relations
3.4 The meson propagator
Problems; 3.1 3.2 3.3 3.4 3.5
LAGRANGIAN FIELD THEORY AND CANONICAL QUANTIZATION (CHAPTER 2)

In the history of science, the first field theory was electromagnetism. (Maxwell)

There are 2 vector fields, E and B.

In spacetime we have a field tensor. (Minkowski)

- The classical field theory describes electromagnetic waves with $\omega = ck$.
- The quantum field theory describes photons. (Chapter 1)
- We can derive the theory from a Lagrangian, and then quantize it. But there are some subtleties, due to gauge invariance! (Chapter 5)

Electromagnetism isn’t very interesting without sources, i.e., charges.

- Add the electron field (Chapter 4) which leads to Quantum Electrodynamics. (Chapter 7)
Recall the example of the Schrödinger equation, from Monday.

- **Classical field theory:** \(\psi(x,t) \) is a complex function.
- **Quantum field theory:** \(\psi(x,t) \) is a non-hermitian operator.

Now another example: (Read SECTIONs 2.1, 2.2, 3.1)

A REAL SCALAR FIELD \(\phi(x,t) \)

This example is relativistically covariant.

\[
\begin{align*}
\mathcal{L} & = \frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 - \frac{c^2}{2} \left(\nabla \phi \right)^2 - \frac{1}{2} \left(\frac{mc^2}{\hbar} \right)^2 \phi^2 \\
A & = \int \left\{ \frac{1}{2} \phi^2 - \frac{c^2}{2} \nabla \phi \cdot \nabla \phi - \frac{1}{2} \left(\frac{mc^2}{\hbar} \right)^2 \phi^2 \right\} d^3x \, dt \\
\delta A & = \int \delta \phi \left\{ \phi \, \delta \phi - c^2 \nabla \phi \cdot \nabla (\delta \phi) - \left(\frac{mc^2}{\hbar} \right)^2 \phi \, \delta \phi \right\} d^3x \, dt \\
& = \int \delta \phi \left\{ -\phi + c^2 \nabla^2 \phi - \left(\frac{mc^2}{\hbar} \right)^2 \phi \right\} d^3x \, dt \\
& = 0 \text{ for any variation } \delta \phi(x,t).
\end{align*}
\]

\[
\begin{align*}
[i \hbar \gamma^0 - \gamma^i \nabla_i + (\gamma^0 \frac{mc}{\hbar})^2] \phi & = 0 \\
& \text{the Klein–Gordon equation}
\end{align*}
\]
We can solve the Klein-Gordon equation, in plane waves...

$$ \dddot{\phi} - c^2 \nabla^2 \phi + \left(\frac{mc^2}{\hbar} \right)^2 \phi = 0 $$

The Klein-Gordon equation

$$ \phi(\vec{x}, t) = C e^{i \left(\vec{k} \cdot \vec{x} - \omega t \right)} $$

where

$$ -\omega^2 + c^2 k^2 + \left(\frac{mc^2}{\hbar} \right)^2 = 0 $$

$$ \omega = \pm \sqrt{c^2 k^2 + m^2 c^4 / \hbar^2} $$

For example,

$$ \hbar \omega = \pm \sqrt{(c^2 k)^2 + (mc^2)^2} $$

Note that this is the energy ($\hbar \omega$) and momentum ($\hbar \vec{k}$) relation of special relativity.

\(What \ are \ the \ negative \ energy \ solutions? \)

The general solution (**Hermitian**) is

$$ \phi(\vec{x}, t) = \sum_k N_k \left\{ a_k \ e^{i (\vec{k} \cdot \vec{x} - \omega t)} + a_k^\dagger \ e^{-i (\vec{k} \cdot \vec{x} - \omega t)} \right\} $$

Quantization

We may anticipate

$$ [a_k, a_{k'}^\dagger] = \delta_{k k'} \ (k, k') $$

$$ [a_k, a_k] = 0 \ \text{and} \ [a_k^\dagger, a_k^\dagger] = 0 $$

We'll derive this from Dirac’s **canonical quantization**. Recall,

$$ [q, p] = \hbar \text{ } where \ \ \ p = \partial L / \partial \dot{q} $$

$$ a_k^\dagger \text{ in the quantized theory}$$
The Hamiltonian

\[H = p \dot{q} - L, \]
rewritten in terms of \(q \) and \(p \)

\[H = \int \left(\pi(x) \dot{\varphi}(x) - \mathcal{L} \right) d^3x \]
rewritten in terms of \(\varphi(x) \) and \(\pi(x) \)

Homework problem 18.

(A) Write \(H \) in terms of \(\pi(x) \) and \(\varphi(x) \).

(B) Write \(H \) in terms of \(a_k \) and \(a_k^\dagger \).

Homework problem 19.

Determine the Feynman propagator for the free scalar field:

\[\Delta_F(x-y) = \langle 0 \mid T \varphi(x) \varphi(y) \mid 0 \rangle. \]

Here \(x \) stands for the 4-vector spacetime coordinate, \(x^\mu = (x^0, x, y, z) \).
Next: A real scalar field ϕ with a source ρ.

To make it simpler, set $\hbar = 1$ and $c = 1$ ("natural units"). At the end of a calculation we can restore the factors of \hbar and c by dimensional analysis (i.e., simple units analysis).

The field equation is a linear inhomogeneous equation;

so $\phi(x,t) = \phi_{\text{particular}}(x,t) + \phi_{\text{homogeneous}}(x,t)$.

The \textit{particular solution} comes from the source; e.g., it could be a mean field produced by a static source; or, waves radiated by a time dependent source. The \textit{homogeneous solution} consists of harmonic waves.

\begin{equation}
-\nabla^2 \phi_0 + m^2 \phi_0 = \rho(x)
\end{equation}

We need the Green's function G:

\begin{equation}
-\nabla^2 + m^2 \quad \text{i.e.,}
\end{equation}

\begin{equation}
(-\nabla^2 + m^2) G(x-y) = \delta^3(x-y)
\end{equation}

Then

\begin{equation}
\phi_0(x) = \int G(x-y) \rho(y) \, d^3y
\end{equation}
The Green’s function of $-\nabla^2 + m^2$

$(-\nabla^2+\mu^2)\,G(\xi) = \delta^3(\xi)$

$G(\xi) = \int \frac{d^3k}{(2\pi)^3} \frac{e^{i\xi \cdot \mathbf{k}}}{k^2+m^2}$

$= \frac{e^{-m|\xi|}}{4\pi |\xi|} \quad (\text{with } \hbar=1 \text{ and } c=1)$

$= \frac{1}{4\pi |\xi|}$

Example

Suppose $\rho(x) = \rho_0 \theta(\ a - r).$
An interaction Lagrangian density

\[\mathcal{L}_{\text{interaction}} = g \, \Psi \dagger \Psi \phi \]

- This \(\mathcal{L}_{\text{int}} \) acts as a source for \(\phi \), with
 \[\rho(x,t) = g \, \Psi \dagger \Psi . \]

- It also acts as a potential for \(\Psi \):
 \[V_{\text{int}}(x,t) = -g \, \phi(x,t) . \]

\[\Rightarrow \] The field equations;
 i.e., Lagrange’s equations,

\[-\frac{\hbar^2}{2m} \nabla^2 \Psi - g \phi \Psi = i\hbar \frac{\partial \Psi}{\partial t} \]
\[\frac{\hbar^2 \phi}{2\epsilon^2} - \nabla^2 \phi + m^2 \phi = g \Psi^\dagger \Psi \]

Homework due Fri Feb 10

Problem 18.
For the free real scalar field,
(A) Write \(H \) in terms of \(\pi(x) \) and \(\phi(x) \).
(B) Write \(H \) in terms of \(a_k \) and \(a_k^\dagger \).

Problem 19.
(A) Mandl and Shaw problem 3.3.
(B) Mandl and Shaw problem 3.4.

Problem 20.
The Yukawa theory problem.