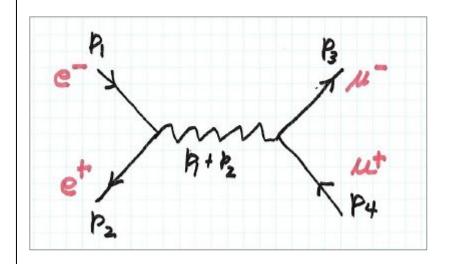
CHAPTER 14 - APPLICATIONS : QED

OUTLINE of the chapter

- 14.1 ▶ Scattering in a Coulomb field ✓
- 14.2 ▶ Form factors ✓
- 14.3 ► The Rosenbluth formula ✓
- 14.4 ► Compton scattering ✓
- 14.5 ► Inverse Compton scattering ✓
- 14.6 ▶ Processes $\gamma \gamma \rightarrow e^+e^-$ and $e^+e^- \rightarrow \gamma \gamma$ ✓
- 14.7 ► $e^+e^- \rightarrow \mu^+\mu^-$ annihilation
- 14.8 ► Problems for Chapter 14

Section 14.7 \triangleright $\underline{e+e-annihilation\ to\ \mu+\mu-}$ and related processes!

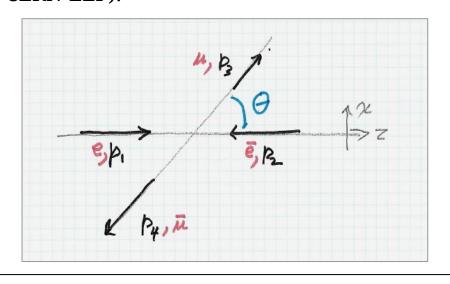
There is one Feynman diagram for this process.



Kinematics

It is most natural to use the center of mass frame of reference.

This is also the *lab frame of reference* for an electron-positron collider (e.g., DESY-PETRA, SLAC-PEP, SLAC-SLC, CERN-LEP).

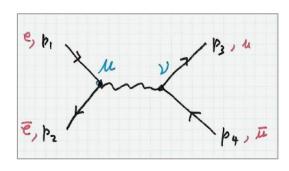


In the center of mass frame of reference, let the z-axis be the electron beam,

$$\begin{aligned} p_1^{\ \mu} &= (E_e^{\ }, 0, 0, p); \\ p_2^{\ \mu} &= (E_e^{\ }, 0, 0, -p) \end{aligned} \\ E_e^{\ } &= \text{SQRT}(p^2 + m^2) \\ p_3^{\ \mu} &= (E_\mu^{\ }, p_3 \sin \theta, 0, p_3 \cos \theta) \\ p_4^{\ \mu} &= (E_\mu^{\ }, -p_3 \sin \theta, 0, -p_3 \cos \theta) \\ E_\mu^{\ } &= \text{SQRT}(p_3^{\ 2} + M^2) = E_e \end{aligned} \\ s &= (p_1 + p_2)^2 = 4 E_e^2 \\ t &= (p_1 - p_3)^2 = (E_e - E_\mu^{\ })^2 - (p_1 - p_3)^2 \\ &= -(p_3 \sin \theta)^2 - (p - p_3 \cos \theta)^2 \\ &= -p_3^{\ 2} - p^2 + 2 p p_3 \cos \theta \end{aligned} \\ u &= (p_1 - p_4)^2 = -p_3^{\ 2} - p^2 - 2 p p_3 \cos \theta \end{aligned}$$

Check: $s + t + u = 2m^2 + 2M^2$

The matrix element



$$M = [v_2 (ie\gamma^{\mu}) u_1] [u_3 (ie\gamma^{\nu}) v_4] (-ig_{\mu\nu}/q^2)$$

where
$$q^{\mu} = p_1^{\mu} + p_2^{\mu} = p_3^{\mu} + p_4^{\mu}$$
.

Now calculate the amplitude squared,

$$|\mathbf{M}|^2 = \mathbf{e}^4 / \mathbf{s}^2 [\overline{\mathbf{v}}_2 \, \gamma^{\mu} \, \mathbf{u}_1] [\overline{\mathbf{u}}_3 \, \gamma^{\nu} \, \mathbf{v}_4] g_{\mu\nu}$$
$$[\overline{\mathbf{u}}_1 \, \gamma^{\alpha} \, \mathbf{v}_2] [\overline{\mathbf{v}}_4 \, \gamma^{\beta} \, \mathbf{u}_3] g_{\alpha\beta}$$

$$|M|^{2} = e^{4} / s^{2} [\bar{v}_{2} \gamma^{\mu} u_{1}] [\bar{u}_{1} \gamma^{\alpha} v_{2}]$$
$$[\bar{u}_{3} \gamma^{\nu} v_{4}] [\bar{v}_{4} \gamma^{\beta} u_{3}] g_{\mu\nu} g_{\alpha\beta}$$

$$|\overline{M}|^{2} = e^{4} / s^{2} / (4m^{2}M^{2})$$

$$Tr \{ \gamma^{\mu} (p_{1} + m) \gamma^{\alpha} \{ p_{2} - m) \}$$

$$Tr \{ \gamma_{\mu} (p_{4} - M) \gamma_{\alpha} \{ p_{3} + M) \}$$

$$= e^{4} / s^{2} / (4m^{2}M^{2}) E^{\mu\alpha} M_{\mu\alpha}$$

I'll neglect the mass of the electron; that is,

- \Box m = 0
- \Box $E_{e} = p$
- $\Box \quad E_{\text{muon}} = E_{\text{e}} \text{ implies } p_3^2 + M^2 = p^2$
- \Box s = 4 p²
- \Box t = M² 2p² + 2 p p₃cos θ

The matrix element squared

$$|M|^2 = e^4 / s^2 / (4m^2M^2)$$
 $E^{\mu\alpha} M_{\mu\alpha}$

Note $4 \text{ m}^2 \text{ M}^2 = [\Pi n^2]$.

Calculate $E^{\mu\alpha} M_{\mu\alpha}$ using FeynCalc, summing and averaging over spins for the unpolarized process. Also, we can approximate m = 0 because m << M.

For
$$m = 0$$
,

$$E^{\mu\alpha} M_{\mu\alpha} = 16 \text{ M}^4 - 32 \text{ M}^2 \text{ t} + 8 \text{ s}^2 + 16 \text{ s} \text{ t} + 16 \text{ t}^2$$
.

In the center of mass frame of reference,

$$p = E_e$$
; $E_3 = E_e$; $p_3 = SQRT(E_e^2 - M^2)$
 $s = 4E_e^2$;
 $t = M^2 - 2p^2 + 2 p p_3 cos\theta$.

In[14]:= tenE = Tr[GA[
$$\mu$$
]. (GS[$p1$] + m).GA[α]. (GS[$p2$] - m)] tenM = Tr[GA[μ]. (GS[$p4$] - M).GA[α]. (GS[$p3$] + M)] \mathcal{E} = Calc[tenE.tenM] \mathcal{E} = Simplify[Expand[\mathcal{E} /. {u \rightarrow 2 m^2 + 2 M^2 - s - t}]] (* set m = 0 *) \mathcal{E} = Expand[\mathcal{E} /. {m \rightarrow 0}]

Out[14]= $4\left(-\frac{1}{2}m^2g^{\alpha\mu} - \frac{sg^{\alpha\mu}}{2} + p1^{\mu}p2^{\alpha} + p1^{\alpha}p2^{\mu}\right)$

Out[15]= $4\left(-\frac{1}{2}sg^{\alpha\mu} + p3^{\mu}p4^{\alpha} + p3^{\alpha}p4^{\mu}\right)$

Out[16]= $16m^4 + 48m^2M^2 + 16m^2s - 16m^2t - 16m^2u + 16M^4 + 16M^2s - 16M^2t$

Out[17]= $8\left(2m^4 + m^2\left(6M^2 - 4t\right) + 2M^4 - 4M^2t + s^2 + 2st + 2t^2\right)$

Out[18]= $16M^4 - 32M^2t + 8s^2 + 16st + 16t^2$

The cross section in the C.o.M.

$$\frac{d\sigma}{d\Omega} = \frac{\left[\prod n^2\right]}{64 \ \Pi^2} s \frac{p_3}{p} |M|^2 \left[\prod n^2\right]$$

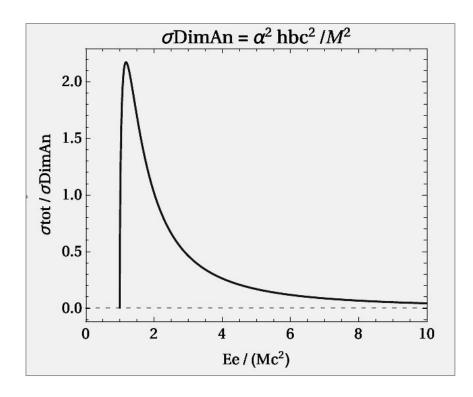
$$\Delta \sigma = \Pi nsq / (64 * Pi^2 * s) * (p3/p) * Msq$$

$$\frac{\alpha^2 \sqrt{\text{Ee}^2 - M^2} \left(\text{Ee}^2 \left(1 + \cos^2 \right) - M^2 \left(\cos^2 - 1 \right) \right)}{4 \text{ Ee}^5}$$

 \Rightarrow the total cross section

$$\frac{2 \pi \alpha^2 \sqrt{\text{Ee}^2 - M^2}}{3 \text{ Ee}^5} \left(2 \text{ Ee}^2 + M^2\right)$$

Graphical analysis of the cross section



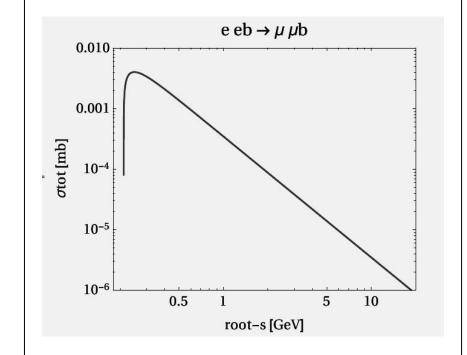
\bigstar The process e+ + e- \rightarrow hadrons

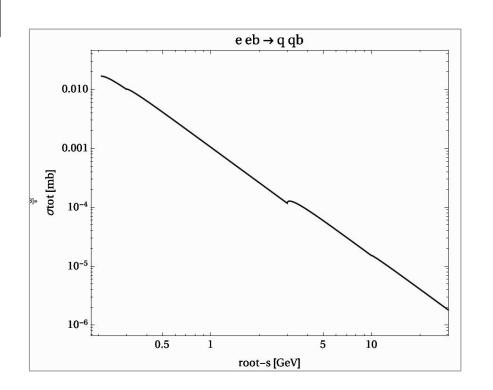
- This was very important in the history of high energy physics; it had a big influence on the acceptance of QCD.
- QCD is asymptotically free.
 Therefore the cross section can be approximated by

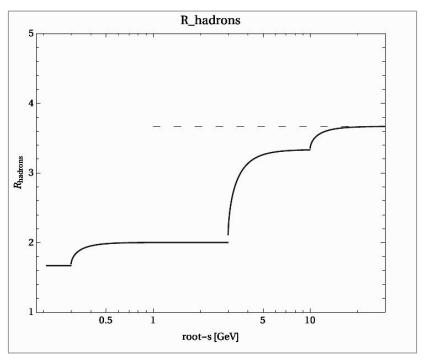
$$\sigma(e\bar{e}{\rightarrow}hadrons) \approx \sigma(e\bar{e}{\rightarrow}quarks)$$

- ee \rightarrow qq is just like ee \rightarrow $\mu\mu$, except for the difference in electric charges.
- So we might guess $R = \sigma_{hadrons} / \sigma_{uu} = \sum e_{q}^{2} / e^{2}$

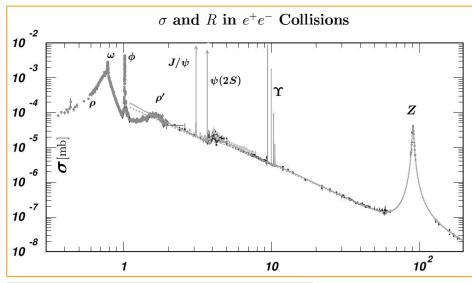
At $\sqrt{s} > 6$ GeV we expect $R = 3 (\frac{1}{3})^2 + 3 (\frac{2}{3})^2 + 3 (\frac{1}{3})^2 + 3 (\frac{2}{3})^2 + 3 (\frac{1}{3})^2$ = 11/3 = 3.667

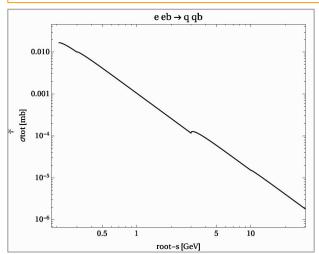




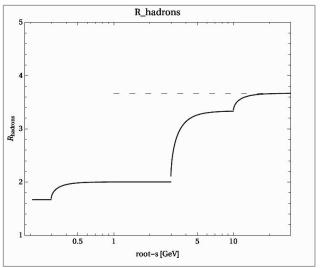


Thresholds occur at $\sqrt{s} = 2 \text{ m}_{q}$.









HOMEWORK NOTHING NEW TO ASSIGN

Homework Problems due April 14

18. Some calculations from Chapter 14.

If you use FeynCalc (the easy way) then hand in a printout of the program including the result. If you do the calculation by hand, hand in the step by step details.

- (a) Given equation 68 derive equation 71.
- (b) Given equations 97 100, derive equations 107 and 112.
- (c) Derive the result in equation 118.
- 19. Derive the center of mass cross section for Bhabha scattering. If you use FeynCalc (the easy way) then hand in a printout of the program including the result. If you do the calculation by hand, hand in the step by step details. Compare your result, in the form of a plot of $d\sigma/d\Omega$ versus θ , to measurements from the PETRA e+e- collider.
- 20. We sometimes hear the statement "The electron is a point particle." What does that mean? Ref: G. Kopp, D. Schaile, M. Spira, P.M. Zerwas, Z. Phys. C 65, 545 (1995). According to this reference, what is the experimental bound on the radius of the electron?
- 21. Is it possible to observe $\gamma\gamma \rightarrow e^- + e^+$. If so, how. If not, why not?
- 22. Calculate the mean lifetime of para-positronium. (You can use the results in the book, but fill in the gaps.)
- 23. Show why the annihilation process $e^- + e^+ \rightarrow \gamma$ cannot occur.