$1\sqrt{}$

Chapter 9. PLANE E. M. WAVES AND PROPAGATION IN MATTER

★ Lecture #1 on waves in matter

★ Section 9.1Plane waves in dielectric media

Plane Waves in Dielectric Media

Recall plane waves in vacuum ... $\vec{E}(\vec{x},t) = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$ and $\vec{B}(\vec{x},t) = \vec{B}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$

- The real parts are the physical fields. The vectors $\{ \vec{k}, \vec{E}_0, \vec{B}_0 \}$ form a righthanded orthogonal triad. Dispersion relation $\omega = c k$
- $= \sqrt{3} = \sqrt{5}$

 $|\vec{B}_0| = |\vec{E}_0|$

Now calculate plane waves in a linear medium, with permittivity ϵ and permeability

μ.

Today we'll take ϵ and μ to be constant real numbers. Later we'll find that this assumption is not generally valid. Waves1.0910.NB | 3

∎1

2√

Macroscopic electrodynamics with no free sources

<u>The equations</u>

i.e., Maxwell's equations with $\rho_{\text{free}} = 0$ and $\vec{J}_{\text{free}} = 0$, $\nabla \times \vec{E} + \frac{\partial \vec{B}}{c \partial t} = 0$ and $\nabla \cdot \vec{B} = 0$

$$\nabla \cdot \vec{D} = 0$$
 and $\nabla \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = 0$

The solutions

The plane wave solutions are complete, so we seek ...

$$\vec{E}(\vec{x},t) = \vec{E}_{o} e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)}$$

and $\vec{B}(\vec{x},t) = \vec{B}_{o} e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)}$

Substituting into Maxwell's equations,

 ∇ gets replaced by i \vec{k} and $\partial/\partial t$ gets replaced by $-i \omega \implies$

$$i \vec{k} \times \vec{E}_{0} - i (\omega/c) \vec{B}_{0} = 0$$

$$i \vec{k} \cdot \vec{B}_{0} = 0$$

$$i \vec{k} \cdot \vec{E}_{0} \epsilon = 0$$

$$i \vec{k} \times \vec{B}_{0} / \mu + i (\omega/c) \epsilon \vec{E}_{0} = 0$$
(you can cancel all the factors of i))

Waves1.0910.NB

■2

$$3\checkmark$$

$$\vec{k} \times \vec{E}_{0} - (\omega/c) \vec{B}_{0} = 0 \quad \& \quad \vec{k} \cdot \vec{B}_{0} = 0$$

$$\vec{k} \cdot \vec{E}_{0} \epsilon = 0 \quad \& \quad \vec{k} \times \vec{B}_{0} / \mu + (\omega/c) \epsilon \vec{E}_{0} = 0$$

RESULTS

• Note that $\vec{k} \cdot \vec{E}_{o} = 0$ and $\vec{k} \cdot \vec{B}_{o} = 0$ and $\vec{k} \times \vec{E}_{o}$ is parallel to \vec{B}_{o} ;

 \therefore { \vec{k} , \vec{E}_{o} , \vec{B}_{o} } form a right-handed orthogonal triad of vectors.

•
$$\vec{k} \times \vec{E}_{o} = (\omega/c) \ \vec{B}_{o} \implies$$

 $k \ E_{o} = (\omega/c) \ B_{o}$
 $\vec{k} \times \vec{B}_{o} = -\mu\epsilon (\omega/c) \ \vec{E}_{o} \implies$
 $k \ B_{o} = \mu\epsilon (\omega/c) \ E_{o}$

So ∴

•
$$v_{\text{phase}} = \frac{\omega}{k} = \frac{c}{\sqrt{\epsilon\mu}}$$

• the index of refraction $n \equiv c / v_{phase} = \sqrt{\epsilon \mu} > 1$ • $B_0 = \sqrt{\epsilon \mu} E_0$ (i.e., $B_0 > E_0$) Is there anything more to say? # Light travels slower in a material medium than in vacuum. # The phase velocity is $v_{phase} = c / n$, where n $= \sqrt{\epsilon \mu}$ is the index of refraction; this leads us to GEOMETRICAL OPTICS. # The group velocity is $v_{group} = \frac{d\omega}{dk}$; $v_{group} \neq v_{phase}$ because of "dispersion" : ϵ

and μ vary with ω .

4√

Section 9.2: Reflection and Refraction at a Dielectric Interface

But first we need to review something – Boundary Conditions of the Fields at Surfaces

/1/ B_{normal} is continuous across any surface. (Eq. 1.21)

In[*]:= W1F2

/2/ $E_{\text{tangential}}$ is continuous across any surface. (Eq. 1.26)

In[=]:= W1F3

Waves1.0910.NB | 9

∎4

5√

/3/ $D_{\rm normal}$ is continuous across any electrically neutral surface ($\sigma_{\rm free}$ = 0). (Eq. 1.20)

/4/ $H_{\text{tangential}}$ is continuous across any current-free surface ($\vec{K}_{\text{free}} = 0$). (Eq. 1.25)

Waves1.0910.NB | 11

■5

To calculate the reflection and refraction at a dielectric interface, all we need to do is to apply these boundary conditions on the fields: E_{tang} , D_{norm} , B_{norm} , H_{tang} are continuous across the interface.

6√

In[=]:= W1F1

Study the figure.

■ The *interface* is the xy-plane; i.e., z = 0; normal vector $\hat{n} = \hat{e}_z$.

■ The *plane of incidence* is the xz-plane (= the plane spanned by the normal vector $\hat{n} = \hat{e}_z$ and the incident vector $\vec{k} = k_x \hat{e}_x + k_z \hat{e}_z$.)

■ We'll calculate reflection and refraction for incident plane waves. (The reflected and transmitted waves will also be plane waves.)

the incident wave:

 \vec{E} and \vec{B} ; \vec{k} and ω ; \hat{e} and $\hat{k} \times \hat{e}$ the transmitted wave;

 $\overrightarrow{E'}$ and $\overrightarrow{B'}$; $\overrightarrow{k'}$ and ω' ; \hat{e}' and $\hat{k}' \times \hat{e}'$ the reflected wave;

 \vec{E} " and \vec{B} "; \vec{k} " and ω "; \hat{e} " and \hat{k} " × \hat{e} "

■ There are two polarization cases:

TE : Transverse Electric polarization; i.e., \hat{e} is perpendicu-

lar to the plane of incidence

TM : Transverse Magnetic polarization; i.e.,

 $\hat{k} \times \hat{e}$ is perpendicular to the plane of incidence

Waves1.0910.NB | 13

We have 4 boundary conditions to apply. I'll work out one example. Consider TE incident polarization. Then we have $\hat{n} = \hat{e}_z$; $\vec{k} = k_x \hat{e}_x + k_z \hat{e}_z$; and $\hat{e}_{inc} = \hat{e}_y$. $\vec{E}_{tangential}$ is continuous at z = 0. In[=]:= W1Sc1

Out[=]=

$$TE \ lincident wave :
(transverse to plane g incidence)
\hat{e} = \hat{e}_{y} \ and \ \vec{k} = h_{x}\hat{e}_{x} + h_{z}\hat{e}_{z}
\vec{k} = M_{T} \frac{\omega}{c} \left[\hat{e}_{x} \ \Delta m \hat{\theta}_{z} + \hat{e}_{z} \ \omega s \theta_{z}\right]
\hat{e}' = \hat{e}'' = \hat{e}_{y}
\vec{k}' = M_{T} \frac{\omega'}{c} \left[\hat{e}_{x} \ sm \theta_{z} + \hat{e}_{z} \ \omega s \theta_{z}\right]
\vec{k}'' = M_{T} \frac{\omega'}{c} \left[\hat{e}_{x} \ sm \theta_{z} + \hat{e}_{z} \ \omega s \theta_{z}\right]
\vec{k}'' = M_{T} \frac{\omega''}{c} \left[\hat{e}_{x} \ sm \theta_{z} + \hat{e}_{z} \ \omega s \theta_{z}\right]
\vec{k}'' = M_{T} \frac{\omega''}{c} \left[\hat{e}_{x} \ sm \theta_{z} + \hat{e}_{z} \ \omega s \theta_{z}\right]
\vec{k}'' = M_{T} \frac{\omega''}{c} \left[\hat{e}_{x} \ sm \theta_{z} - \hat{e}_{z} \ \omega s \theta_{z}\right]
\vec{E}_{tang} (z=0)
= \vec{E}_{o} \ e^{i(l_{x}x - \omega t)} + \vec{E}_{o}^{\mu} \ e^{i(l_{x}x - \omega t)} + \vec{E}_{o}^{\mu} \ e^{i(l_{x}x - \omega t)}$$

The final equation must hold for all t; $\therefore \omega = \omega' = \omega''.$

And the equation must hold for all x; $\therefore k_x = k'_x = k''_x$.

8√

ANGLES

Write $\theta_{\text{incident}} = \theta_i$; $\theta_{\text{transmitted}} = \theta_t$; $\theta_{\text{reflected}} = \theta_r$. $k_x = k''_x \implies$ $(n_I \,\omega/\text{c}) \sin \theta_i = (n_I \,\omega''/\text{c}) \sin \theta_r$ $\therefore \quad \theta_i = \theta_r$ (the law of equal angles for reflection)

 $k_x = k'_x \implies (n_I \,\omega/c) \sin \theta_i = (n_T \,\omega'/c) \sin \theta_t$ $\therefore \quad n_I \,\sin \theta_i = n_T \sin \theta_t$ (Snell's law for refraction) Waves1.0910.NB | 17

∎8

These familiar laws of geometrical optics are required by the electromagnetic field theory, in order to satisfy one of the boundary conditions ($E_{tangential}$ is continuous). The other three boundary conditions require exactly the same laws of geometrical optics. (It is easy to see why!)

So now we understand the <u>directions</u> of reflection and refraction. Next, what are the <u>intensities</u> of reflection and refraction? For that we need to derive Fresnel's equations (Sections 9.2 and 9.3).