
$2 \checkmark$
Reflection and Refraction from a Dielectric Interface
$n_{n}(t)=W 1 F 1$

$$
-\mathrm{I}-\quad-\mathrm{T}-
$$

Fresnel's equations

TE waves have

$$
\begin{aligned}
& E^{\text {trans }} / E^{\mathrm{inc}}= \\
& \quad 2 n_{T} \cos \theta_{i} /\left(n_{I} \cos \theta_{t}+n_{I} \cos \theta_{i}\right) \\
& E^{\mathrm{refl}} / E^{\mathrm{inc}}= \\
& \quad\left(n_{I} \cos \theta_{i}-n_{T} \cos \theta_{t}\right) /\left(n_{T} \cos \theta_{t}+n_{I} \cos \theta_{i}\right)
\end{aligned}
$$

TM waves have
$B^{\text {trans }} / B^{\text {inc }}=$
$2 n_{T} \cos \theta_{i} /\left(n_{T} \cos \theta_{i}+n_{T} \cos \theta_{t}\right)$
$B^{\text {refl }} / B^{\text {inc }}=$
$\left(n_{T} \cos \theta_{i}-n_{I} \cos \theta_{t}\right) /\left(n_{T} \cos \theta_{i}+n_{I} \cos \theta_{t}\right)$
We are assuming that $\mu_{I}=\mu_{T}=1$.
Then $\mathrm{n}=\sqrt{\epsilon}$ in each material.

That's why you should wear polarized sunglasses when you go fishing.

- Calculation of Brewster' s angle

Recall, for transverse magnetic waves ...

$$
\begin{aligned}
& \frac{B^{\text {refl }}}{B^{\text {inc }}}=\frac{n_{T} \cos \theta_{i}-n_{I} \cos \theta_{t}}{n_{T} \cos \theta_{i}+n_{I} \cos \theta_{t}} \\
& \quad \text { and } \quad n_{I} \sin \theta_{i}=n_{T} \sin \theta_{t}
\end{aligned}
$$

The ratio is zero at $\theta_{i}=\theta_{\text {Brewster }}$.
So, solve these equations,

$$
\begin{aligned}
& n_{T} \cos \theta_{B}=n_{I} \cos \theta_{t} \\
& n_{I} \sin \theta_{B}=n_{T} \sin \theta_{t}
\end{aligned}
$$

The result is

$$
\tan \theta_{B}=n_{T} / n_{I}
$$

Example. Calculate θ_{B} for the surface of a lake.
a) $\operatorname{ArcTan}[1.33 / 1]$ * $180 / P i$

ArcTan[1/1.33] * $180 / \mathrm{Pi}$

- 53.0612
-36.9388
- Total Internal Reflection

For the case $n_{I}>n_{T}$ [e.g., light going from water (I) into air (T)] the transmitted wave vanishes if $\theta_{i}>\theta_{\text {critical }}$. In other words, the light cannot escape from the material for incident angles greater than $\theta_{\text {critical }}$.
$h_{n}()^{\prime}$ fisheye

- Calculate the critical angle.

It does not depend on polarization, so we just use Snell's law.

$$
\begin{aligned}
& n_{I} \sin \theta_{i}=n_{T} \sin \theta_{t} \\
& \sin \theta_{t}=\left(n_{I} / n_{T}\right) \sin \theta_{i}
\end{aligned}
$$

There is no solution if $\sin \theta_{t}>1$;
therefore $\theta_{\text {critical }}=\arcsin \left(n_{T} / n_{I}\right)$.

- For example, for light incident from water into air, the critical angle is
$\theta_{\text {critical }}=\arcsin (1 / 1.33)=48.7$ degrees.
- This explains the term "fisheye lens" used in photography.
- Applications of total internal reflection

5'

Conservation of Energy in Reflection and

Refraction

We know that energy is conserved, in general. Let's see how it comes about in the process of reflection and refraction.
Consider TM polarization ; air ($\mathrm{n}=1$) \longrightarrow glass $(\mathrm{n}=1.5)$; at normal incidence ; i.e., $\theta_{\mathrm{inc}}=0$.
mut Twplot

At normal incidence, $B_{0}{ }^{\prime}=1.2 B_{0}$ and $B_{0}{ }^{\prime \prime}=$ $0.2 B_{0}$.
$\left[\left(2^{*} 1.5\right) /\left(1.5^{+1}\right)=1.2 ;(1.5-1) /(1.5+1)=0.2\right]$
Is energy conserved?
Calculate the energy fluxes.

- (1) Incident wave only:
$S_{1}=\mathrm{c} /(4 \pi) E_{\mathrm{o}} B_{\mathrm{o}} \cos ^{2}(\mathrm{kz}-\omega \mathrm{t})$;
average $=c /(8 \pi) B_{0}^{2}$
- (2) Transmitted wave:
$S_{2}=\mathrm{c} /(4 \pi) E_{\mathrm{o}}{ }^{\prime} B_{\mathrm{o}}{ }^{\prime} \cos ^{2}(\mathrm{kz}-\omega \mathrm{t})$;
average $=c /(8 \pi) B_{0}^{\prime 2} / 1.5=1.2^{2} / 1.5 \times S_{1}=$ $0.96 S_{1}$
- (3) Reflected wave only:
$S_{3}=\mathrm{c} /(4 \pi) E_{\mathrm{o}}{ }^{"} B_{\mathrm{o}}{ }^{\prime \prime} \cos ^{2}(\mathrm{kz}-\omega \mathrm{t})$;
average $=c /(8 \pi) B_{0}^{\prime \prime 2}=0.2^{2} S_{1}=0.04 S_{1}$.
But what about interference between the incident and reflected waves?
Exercise: Calculate $\left(\vec{E}+\vec{E}{ }^{\prime \prime}\right) \times\left(\vec{B}+\vec{B}{ }^{\prime \prime}\right)$; the result is, no interference.

