1√

Chapter 9 : PLANE E. M. WAVES... ... AND PROPAGATION IN MATTER

 \star Waves in matter ; reflection and refraction, part 2

★ Section 9.4
 Brewster's Angle
 and Total Internal Reflection

2√

Reflection and Refraction from a Dielectric Interface

Waves2b.0913.NB 5

■2

FRESNEL'S EQUATIONS

TE waves have

$$E^{\text{trans}} / E^{\text{inc}} =$$

 $2 n_T \cos \theta_i / (n_I \cos \theta_t + n_I \cos \theta_i)$
 $E^{\text{refl}} / E^{\text{inc}} =$
 $(n_I \cos \theta_i - n_T \cos \theta_t) / (n_T \cos \theta_t + n_I \cos \theta_i)$
TM waves have
 $B^{\text{trans}} / B^{\text{inc}} =$
 $2 n_T \cos \theta_i / (n_T \cos \theta_i + n_T \cos \theta_t)$

 $B^{\text{refl}} / B^{\text{inc}} = (n_T \cos \theta_i - n_I \cos \theta_t) / (n_T \cos \theta_i + n_I \cos \theta_t)$

We are assuming that $\mu_I = \mu_T = 1$. Then $n = \sqrt{\epsilon}$ in each material.

3√

Section 9.4: Brewster's angle and Total Internal Reflection

BREWSTER' S ANGLE

Consider TM polarization, with $n_T > n_I$. The reflection coefficient is zero at Brewster's angle.

There is no reflection at θ_B , and very little reflection at angles near θ_B .

```
TMplot (* for air
(n=1) \rightarrow glass (n=1.5) *)
```


•3

That's why you should wear polarized sunglasses when you go fishing.

• Calculation of Brewster's angle Recall, for transverse magnetic waves ...

 $\frac{B^{\text{refl}}}{B^{\text{inc}}} = \frac{n_T \cos \theta_i - n_I \cos \theta_t}{n_T \cos \theta_i + n_I \cos \theta_t}$ and $n_I \sin \theta_i = n_T \sin \theta_t$ The ratio is zero at $\theta_i = \theta_{\text{Brewster}}$. So, solve these equations, $n_T \cos \theta_B = n_I \cos \theta_t$ $n_I \sin \theta_B = n_T \sin \theta_t$ The result is

```
\tan \theta_B = n_T / n_I
```

Example. Calculate θ_B for the surface of a lake.

∞43⊧ 36.9388

Waves2b.0913.NB | 9

Waves2b.0913.NB | 11

■4

10 | Waves2b.0913.NB

4√

TOTAL INTERNAL REFLECTION

For the case $n_I > n_T$ [e.g., light going from water (I) into air (T)] the transmitted wave vanishes if $\theta_i > \theta_{\text{critical}}$. In other words, the light cannot escape from the material for incident angles greater than θ_{critical} .

In[*]:= fisheye

◆ Calculate the critical angle.
It does not depend on polarization, so we just use Snell's law.

 $n_I \sin \theta_i = n_T \sin \theta_t$

 $\sin \theta_t = (n_I / n_T) \sin \theta_i$ There is no solution if $\sin \theta_t > 1$;

therefore $\theta_{\text{critical}} = \arcsin(n_T/n_I)$.

• For example, for light incident from water

into air, the critical angle is

 $\theta_{\text{critical}} = \arcsin(1/1.33) = 48.7 \text{ degrees.}$

- This explains the term "fisheye lens" used in photography.
- Applications of total internal reflection

5•

CONSERVATION OF ENERGY IN REFLECTION AND REFRACTION

We know that energy is conserved, in general. Let's see how it comes about in the process of reflection and refraction.

Consider TM polarization ; air (n=1) \rightarrow glass (n=1.5) ; at normal incidence ; i.e., $\theta_{inc} = 0$.

At normal incidence, $B_0' = 1.2 B_0$ and $B_0'' =$ $0.2 B_0.$ $\left[\frac{2^{1.5}}{1.5} \right] = 1.2; \frac{1.5}{1.5} = 0.2$ *Is energy conserved?* Calculate the energy fluxes. ■ (1) Incident wave only: $S_1 = c/(4\pi) E_0 B_0 \cos^2(kz - \omega t);$ average = $c/(8\pi) B_0^2$ ■ (2) Transmitted wave: $S_2 = c/(4\pi) E_0' B_0' \cos^2(kz - \omega t)$; average = $c/(8\pi) B_0'^2/1.5 = 1.2^2/1.5 \times S_1 =$ $0.96 S_1$ ■ (3) Reflected wave only: $S_3 = c/(4\pi) E_0'' B_0'' \cos^2(kz - \omega t);$ average = $c/(8\pi) B_0^{\prime\prime 2}$ = 0.2² S_1 = 0.04 S_1 . But what about *interference* between the incident and reflected waves? **Exercise:** Calculate $(\vec{E} + \vec{E}'') \times (\vec{B} + \vec{B}'')$; the result is, no interference.

Vaves2b.0913.NB | 13