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Chapter 9. PLANE E. M. WAVES
... AND PROPAGATION IN MATTER

* EM waves in matter

* Section 9.5
“A simple model for constitutive relations”

* Continuous media (not truly continuous ! )
Dielectrics
Magnetic materials
Metals
Plasmas

Matter is molecular, and molecules contain
electric charges and currents.
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The microscopic field equations must include

free charge (and free current) and bound
charge (and bound current).

For example,

Ve E) = 47 (Pfree + pb_o)und)
where Pbound = — V-P;
P (X, t) = polarization = dipole moment per
unit volume = p(¥,t) n(%,t).
We replace ppoung and J bound DY introducing D
and H. But then we need constitutive rela-

tions. For static fields, D = € E and B = u H
where € and u are real constants. That should
also work for “low frequencies” (meaning
what?)

For time-dependent fields, it is more

complex.
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THE MODEL FOR BOUND CHARGE (AND BOUND
CURRENT) IN A SINGLE MOLECULE

Schwinger calls this the “Fermi model”. It’s
simplified , but it gives useful results.

M We' 1l say a molecule consists of positive
charge at rest and negative charge moving
according to an equation of motion,

m[X+yX+wiX]=-eE(D)
(e = “effective negative charge” )
(m = “effective mass of neg. charge”)

How can such a simple model work?

It contains the right physics. It will describe
the mean dipole moment, averaged over a
small volume containing a large number of
molecules, sufficiently well. I.e., it gives a rea-

sonable model for P(X,t).
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We are dealing with a tricky limit:
molecular size < microscopic length <«
macroscopic length

A phenomenological model with four
adjustable parameters: m = “mass”, or inertia
; —e = effective negative charge ; y = a damp-
ing factor ; w,/(27) = a frequency for oscilla-
tions around equilibrium.

Note that X represents the displacement
from equilibrium; i.e.,

X = ( Xneg — Xpos ) (points from pos to neg);
therefore the dipole moment of the model
molecule is p = — e X(t).

M There is a resistive force=—myx <
damping .

M There is a restoring force = — m w2 X <
oscillations around equilibrium
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m[¥+y*+w2X]=—eE(1)

THE SOLUTION

We are very familiar with this equation. It is
the damped driven oscillator. The general solu-
tion is

X(t) = any particular solution

+ the general solution of the homog. eq.

Suppose E(t) =&(t) e, .
Then we have a 1D equation,
X+yx+w2x=—(e/m)E(t)
The solution is
x(t) = a particular solution + ¢, e?:! + ¢, eP2!
B The homogeneous solution:
eP'where p>+yp+w2=0;
There are two solutions p, and p. ;
c,ePt + ¢, eP>t = the transient .
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The transient /s needed to match whatever /mitial cond)
tions are given. We are not very interested /n the
trans/ient.

m Now we need a particular solution. It will
depend on &(t). For harmonic fields, we can
use the steady-state solution .

So, now we’ll specialize to a harmonic electric

field.

Write &(t)=8(w)e ¢!
(Real part is implied!)
There is a tricky point here: £( t) does not
depend on the displacement from egquilibrium,

X. We are assuming that the molecule is much
smaller than the wavelength of the eim. waves.
Does that make sense as an approximation?
Yes, because for example, 0.1 nm << $00 nm .

X+y X+ w2 x = —(e/m) E(w) et
The steady state solution is x(t) = R e "¢,
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(The steady-state oscillations have the same

frequency as the driving force.)

Plug x(t) = R et into the equation of motion,
[-w” —iyw+ 0] ]R=-(e/m) Ew)

— (e/m) E(w)

2 2 y
W — W —1Yw

So, R(w) =

—(e/m) E(w)

2 2 y
W — W —1yw

—lwt

Model x(t) =

(Re implied)
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B AN IDEAL DIELECTRIC; 1.E., A
NONCONDUCTING MATERIAL

For low frequencies, i.e., w < wo and w < vy,
we can say that the polarization is

- 5 e? np - -
Pt)=—ex(tyny= 5 E(t) = ygEQ)

(0]
where ny, is the density of bound electrons.

€E=1+4m XE

Could you turn this into a quantitative model
of the dielectric constant, for low frequencies?

71wy ~ AE  for the molecular energy levels.
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B CONDUCTIVITY (PLASMAS AND METALS)
For free electrons, w, = 0.

Now the model velocity of the negative

charge is

U(t) = x(1)
= —iw (—(e/m) E(w)) / (—~w? —-iyw) e ®!
—e &(w)

— —— 7 —1wt
m(y —iw)

And so the current density is

() = ne (—e) v(t) = o(w) Ex(t)

where n. = density of free electrons (or, conduc

tion electrons in a metal);

.. n, e’
0 (w) = conductivity = m

Eg. 9.120
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Comments
m J=0F is Ohm's law.
m conductivity «c 1/y; .. resistivity = 1/ con-

ductivity o« y (resistance to motion)
m o = o(w) for a harmonic field; and o is
complex;
 o(w= nee* /[[m(y-iw)]
m The real part of o(w) is not everything !
We don't just want the real part of o ; but we

do want the real part of 7.

m WT (page ??)
"The complex conductivity produces a phase shift between
the current oscillations and the electric field oscillations."

J(t) = Re { 0(w) E(w) e~}
= ... a few lines of algebra ...

n,e?

- — e Re {8(w) e @9}

ma/y* + w?
Y

where tand = % .
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Example.
This figure shows the conductivity of metals at

low frequencies (copied from some unknown

web site)
0.01

a.c. Conductivity Plot r
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Model : x(t) = —o o™

2 .
oW —lyw

—lwt

(Re implied)

PERMITTIVITY (RETURNING TO DIELECTRICS)
For bound electrons we have

_g(w)e—iwt }

2 2 y
wg—wW*—1wy

The polarization 1_5( E ,t):

P(E,t) = npouna( &) BE, 1) = np( &) (—e) X(t)

X(t) = % Re

g 2

- - - &
P&, 1) =ny(&) e (e/m) —

2 .
W —wW>—1wy

,w) e—lwt

P(Z,t) = y(w) E(&,t)
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The frequency-dependent susceptibility is
_mpe? 1
x(w) = m w:-w-iwy
Eq. (9.133)

and the frequency-dependent permittivity is
€(w)=1+4ny(w).
Then the displacement field is

D(R,) = e(w) EGb)

(!! only valid for a harmonic field, w)
(Also, Re is implied.)
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’&_anthanum dense flint LaSF9

DISPERSION Lol

The permittivity e depends on the frequency w/(27). 5 |
Therefore Snell's law (n; sin 6; = n; sin 6,) implies that refrac- § 1.7 ; : Dense fintario
tion of light separates the colors by angles. o
Consider sunlight ( = white light ; a mixture of all the col- 516 \ : Flint F2
ors) incident from air (n, = 1) into glass (n; ~ 1.50). Sup- I3 Barium crown Bak4
.. O — e Borosilicate crown BK7
pose the angle of incidence is #; = 30 degrees. 15—
The angle of refraction will be 6; ~ arcsin (sin3o / n;) = arc- Fluorite crown FKS1A
sin (1/3) = 19.5 degrees. L4 : : u . | |
But that’s not all, because n; depends of w ; n = 04 06 98 elengtﬁ'g ) 1.2 1.4 1.6
 €w) p(w) » Ve(w) . Nglass(red light) < ngj.ss(violet light)
Images from Wikipedia Range of ngjass * 1.50 ~ 1.75

Dispersion = (1/n) (dn /dA)

~ (1/1.6) (— 0.03 / 0.4 um) ~ — 0.05 /um
(Range of visible light is AA ~ 0.4 um .)

—




18 | 3.Waves3.0916.NB 3.Waves3.0916.NB | 19
9v | "9
Dispersion of white light passing through s
droplets of water.
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Rene DesCartes Rene DesCartes analyzed and observed light
L el incident on a dielectric sphere,

m processes of refraction, internal reflection,
and a second refraction;
m dispersion separates the colors;
m the angle with maximum intensity
(“caustic”) = rainbow angle = 40 - 42 degrees
for water.

Fig. Formation of rainbows



