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Chapter 9. PLANE E. M. WAVES
     ... AND PROPAGATION IN MATTER

★ EM waves in matter

★ Section 9.5
“A simple model for constitutive relations”

★ Continuous media (not truly continuous ! )
Dielectrics
Magnetic materials
Metals
Plasmas

Matter is molecular, and molecules contain 
electric charges and currents.
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▪1
The microscopic field equations must include 
free charge (and free current) and bound 
charge (and bound current).
For example,
   ∇ • E = 4π (ρfree + ρbound)
where   ρbound = – ∇ · P ;
P (x, t) = polarization = dipole moment per 
unit volume = p(x,t) n(x,t).
We replace ρ bound and J bound by introducing D 
and H. But then we need constitutive rela-
tions. For static fields, D = ϵ E and B = μ H  
where ϵ and μ are real constants.  That should 
also work for “low frequencies” (meaning 
what?)

For time-dependent fields, it is more 
complex.
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The Model for bound charge (and bound 

current) in a single molecule

Schwinger calls this the “Fermi model”. It’s 
simplified , but it gives useful results.

 We' ll say a molecule consists of positive 
charge at rest and negative charge moving 
according to an equation of motion, 

    m [ x
••

 + γ x
•
 + ω0

2 x ] = – e E( t)
(–e = “effective negative charge” )

(m = “effective mass of neg. charge”)

 How can such a simple model work?
It contains the right physics. It will describe 
the mean dipole moment, averaged over a 
small volume containing a large number of 
molecules, sufficiently well. I.e., it gives a rea-
sonable model for  P(x,t).
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 We are dealing with a tricky limit: 

     molecular size ≪ microscopic length ≪ 
macroscopic length

  A phenomenological model with four 
adjustable parameters: m = “mass”, or inertia 
; –e = effective negative charge ; γ = a damp-
ing factor ; ω0/(2π) = a  frequency for oscilla-
tions around equilibrium.

 Note that  x represents the displacement 
from equilibrium; i.e.,  
     x = 〈 xneg – xpos 〉 (points from pos to neg);
therefore the dipole moment of the model 
molecule is p = – e x(t). 

 There is a resistive force = – m γ x
•
   ⟺  

damping .

 There is a restoring force = – m ω0
2 x ⟺  

oscillations around equilibrium
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     m [ x
••

 + γ x
•
 + ω0

2 x ] = – e E( t)

The Solution

We are very familiar with this equation. It is 
the damped driven oscillator. The general solu-
tion is
   x(t) = any particular solution
   + the general solution of the homog. eq.
Suppose    E(t) = ℰ(t) e$x .
Then we have a 1D equation, 
     x

••
 + γ x

•
 + ω0

2 x = –(e/m) ℰ( t)
The solution is
   x(t) = a particular solution + c1 e p1 t + c2 e p2 t

■  The homogeneous solution:
   e pt where p2 + γ p + ω0

2 = 0 ;
   There are two solutions p1 and p2 ;
   c1 e p1 t + c2 e p2 t = the transient .
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▪3
The transient is needed to match whatever initial condi-

tions are given.  We are not very interested in the 
transient.

◼  Now we need a particular solution. It will 
depend on ℰ( t).  For harmonic fields, we can 
use the steady-state solution .
So, now we’ll specialize to a harmonic electric 

field.

Write     ℰ( t ) = ℰ(ω) e – i ω t

(Real part is implied!)
There  is  a  tricky  point  here:  E (  t)  does  not
depend  on  the  displacement  from  equilibrium,
x .  We are assuming that the molecule  is  much
smaller than the wavelength of the e.m. waves.
Does  that  make  sense  as  an  approximation?
Yes; because for example, 0.1 nm ≪ 500 nm .

      x
••

 + γ x
•
 + ω0

2 x = –(e/m) ℰ(ω) e–iωt

The steady state solution is x(t) = R e – i ω t .
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(The steady-state oscillations have the same 
frequency as the driving force.)
Plug x(t) = R e–iωt  into the equation of motion,
   [ –ω2 – i γ ω + ω0

2  ] R = –(e/m) ℰ(ω)
In[!]:=

So, R(ω) = 
– (e/m) ℰ(ω)
ω0

2 -ω2 – i γ ω

Model x(t) = –(e/m) ℰ(ω)
ω0

2 -ω2 – i γ ω  e–i ω t

(Re implied)

8     3.Waves3.0916.NB

▪4

■ AN IDEAL DIELECTRIC; i.e., a 

nonconducting material

For low frequencies, i.e., ω ≪ ω0 and ω ≪ γ , 
we can say that the polarization is

   P(t) = –e x(t) nb = 
e2 nb
m ω0

2   E(t)  =  χE E(t)

where nb is the density of bound electrons.
   ϵ = 1 + 4π χE
B

Could you turn this into a quantitative model 
of the dielectric constant, for low frequencies? 
ℏ ω0 ~ ΔE    for the molecular energy levels.

3.Waves3.0916.NB    9



5✓

■ CONDUCTIVITY (plasmas and metals)

For free electrons, ω0 = 0.

Now the model velocity of the negative 

charge is

  vx(t) = x
•
(t)

     = –iω ( –(e/m) ℰ(ω) )  / ( –ω2 –iγ ω ) e–i ω t

     = –e ℰ(ω)
m(γ – i ω) e–i ω t

And so the current density is

   Jx(t) = nc (–e) vx( t ) = σ(ω) Ex( t )

where nc = density of free electrons (or, conduc-

tion electrons in a metal);

   σ(ω) = conductivity = nc e2

m (γ – i ω)  
Eq. 9.120
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Comments
◼    J  = σ E  is Ohm's law.
◼   conductivity ∝  1/γ; ∴ resistivity ≡ 1/ con-
ductivity ∝ γ (resistance to motion)
◼   σ = σ(ω) for a harmonic field; and σ is 
complex;
◼   σ(ω) =   nc e2  / [ m (γ – i ω) ]
◼   The real part of σ(ω) is not everything !

We don't just want the real part of σ ; but we 
do want the real part of J .

◼  WT (page ??) 
"The complex conductivity produces a phase shift between 
the current oscillations and the electric field oscillations."
   Jx(t) = Re { σ(ω) ℰ(ω) e – iω t }

        = ... a few lines of algebra ...

        = nc e2

m γ2 +ω2
 Re { ℰ(ω) e – i (ω t+δ) }

        where    tan δ = ωγ  .

3.Waves3.0916.NB    11



6✓
Example.
This figure shows the conductivity of metals at 
low frequencies (copied from some unknown 
web site)

◼Out[!]=
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     Model :  x(t) = –e ℰ(ω) /m
ω0

2 -ω2 – i γ ω  e–i ω t

(Re implied)

PERMITTIVITY (returning to dielectrics)

For bound electrons we have

   x(t) = e
m  Re { –ℰ(ω) e – i ω t

ω0
2 – ω2 – i ω γ  } 

The polarization P( ξ , t ) :

   P( ξ, t) = nbound( ξ)  p(ξ, t ) = nb( ξ)  (–e) x(t) 

   P(ξ, t) = nb( ξ)  e  (e/m) 
ℰ ξ , ω e – i ω t

ω0
2 – ω2 – i ω γ

   P(ξ , t )  =  χ(ω)   E( ξ , t )
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▪7
The frequency-dependent susceptibility is

     χ(ω) = 
nb e2

m  1
ω0

2 – ω2 – i ω γ    

Eq. (9.133)
and the frequency-dependent permittivity is 

ϵ(ω) = 1 + 4 π χ(ω) .

Then the displacement field is

     D(x,t) = ϵ(ω) E(x,t)  
(!! only valid for a harmonic field, ω)

(Also, Re is implied.)
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DISPERSION

The permittivity ϵ depends on the frequency ω/(2π).
Therefore Snell's law (ni sin θi = nt sin θt) implies that refrac-
tion of light separates the colors by angles.
Consider sunlight ( = white light ; a mixture of all the col-
ors) incident from air (n1 = 1)  into glass (nt ≈ 1.50). Sup-
pose the angle of incidence is θi = 30 degrees.
The angle of refraction will be θt ≈ arcsin (sin30 / nt) = arc-
sin (1/3) = 19.5 degrees.
But that’s not all, because nt depends of ω ; n = 

ϵ(ω) μ(ω) ≈ ϵ(ω) .

Images from Wikipedia

◼ In[!]:=

◼ In[!]:=
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◼

In[!]:=

nglass(red light)  < nglass(violet light)

Range of nglass ≈  1.50 ~ 1.75

Dispersion = (1/n) (dn /dλ) 

    ≈  (1/1.6) ( – 0.03 / 0.4 μm) ≈ – 0.05 /μm

(Range of visible light is Δλ ≈ 0.4 μm .)
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Dispersion of white light passing through 
droplets of water.
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◼ In[!]:=
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In[!]:= r1

Rene DesCartes

Out[!]=
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In[!]:= r2

Rene DesCartes analyzed and observed light 
incident on a dielectric sphere,
◼  processes of refraction, internal reflection, 
and a second refraction;
◼  dispersion separates the colors;
◼  the angle with maximum intensity 
(“caustic”) = rainbow angle =  40 - 42 degrees 
for water.

Out[!]=
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