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Chapter 9 - PLANE E. M. WAVES AND 
PROPAGATION IN MATTER

★ Lecture #4 on waves in matter

★ Section 9.6
“Modeling plasmas, metals and dielectrics”

Combining Conduction and Polarization

   m [ x
••

 + γ x
•
 + ω0

2 x ] = – e E( t)
Parameters:
   –e  =  "effective negative charge";
   m = “effective mass” of the negative charge ;
   γ and ω0 .
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Plasmas, metals and dielectrics
Metals have both conduction electrons, for 
which ω0 = 0; and bound electrons—i.e., 
bound to ionic centers—for which ω0 > 0 . 
Then there exists both conductivity and permit-
tivity.
Harmonic wave propagation depends on this 
Maxwell equation,
   ∇ ⨯ H  = (4π/c) J  + (1/c) ∂D/∂t
where

   D = ϵ(ω) ℰ e i  k • x – ω t    (Re implied; ω)

   J  = σ(ω) ℰ e i  k • x – ω t   (   “   )
∴ ∇ ⨯ H   =  [ 4π σ(ω)  – i ω ϵ(ω) ]/c 
                        × ℰ e i (k·x – ωt) 
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∇ ⨯ H   =  [ 4π σ(ω)  – i ω ϵ(ω) ]/c   ℰ 
e i (k·x – ωt) 

We could write the equation in terms of an 

effective conductivity,

   ∇ ⨯ H  =   (4π/c) σeff(ω)  ℰ e i k • x – ωt  

where

   σeff(ω) = σ(ω) – i ω/(4π) ϵ(ω)  ;

or an effective permittivity,

   ∇ ⨯ H  =  (–iω/c) ϵeff(ω)  ℰ e i k • x – ωt 

where

   ϵeff(ω) = ϵ(ω) + ( 4 π i /ω ) σ(ω) .

We’ll use the latter approach.
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The Dispersion Relation for E. M. waves

Recall the elementary result from Section 9.1,

     c2 k2 = ϵ μ ω2;

i.e.,   n = c/ vphase = ck/ω = ϵμ  .

But now we’ll have, for harmonic wave ω,

   c2 k2 = μ ω2 [ ϵ(ω) + 4 π i σ(ω) /ω ].
[ Exercise 9.5.5 ]
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Section 9.6
Modeling plasmas, metals and dielectrics

So, most generally, we can write 

     ϵeff(ω) = ϵbound(ω)  + 4 π i σconduction(ω)/ω

From now on we'll  just  write ϵ (ω) to 

denote ϵeff (ω).

⟹   Equation (9.148)

ϵ(ω) = 1 

     + 4 π e2

m { Σ over i } 
nb,i

ω0,i
2 – ω2 – i ω γi

 

      + 4 π i
ω    e2 nc

m   1
γ – i ω
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▪3

Low frequencies in a metal ⟹  Skin Depth

Suppose

   ω ≪ ω0 and ω ≪ γ  and ω ≪ σ(0) ;

then we can approximate

   ϵ(ω) ≈ ϵ0 + 4πi σ(0) /ω ≈ 4πi σ(0) /ω

∴   c2 k2 = ω2μ ϵ  ≈ ω2 μ [ 4π i σ(0) /ω ].
Exercise : Derive equations for ϵ0 and σ(0)

Then,

   ck ≈ (1+i ) 2 π μ σ(0) ω   ≡ (1+i ) c/δ(ω) ,

where 

   δ(ω) = c
2 π μ σ(0) ω

δ(ω)  is called the skin depth. (Check the 
units!)
The e.m. wave is damped exponentially with 
characteristic damping distance δ.
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The damped wave

In[9]:= δ = 1;

Plot[{Cos[x/δ], Re[Exp[I*x/δ - x/δ]]}, {x, 0, 10},

PlotRange → {All, All},

PlotStyle →

{{Dashing[{0.01, 0.03}], Thickness[0.01], Blue},

{Thickness[0.01], Red}},

ImageSize → Large]
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Damping of low frequency e.m. waves is typi-

cal in metals.

“Low frequency” will include IR waves, and 

even visible light.

That is why metals are opaque.

And that is why metals are shiny.
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High frequencies ; say UV light and beyond

Consider dielectrics with ω ≫ ω0 ,  or conduc-

tors (plasmas or metals) with ω ≫ γ.

For these cases we can approximate

   ϵ(ω) ≈ 1 – 4 π e2 N
m ω2  = 1 – ωp

2

ω2  
where   ωp

2 = 4 π e2 N / m ;

ωp is called the plasma frequency .
NOTE:  N = nb + nc is the total density of elec-
trons (bound + conduction). The dielectric con-
stant ( ≡ effective permittivity)  is less than 1, 
and depends on ω.
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ϵ (ω) = 1 – ωp

2 /ω2

Dielectrics at high frequencies

ω ≫ ω0 normally implies ω ≫ ωp so ϵ(ω) is 
slightly less than 1, and the index of refraction 
is slightly less than 1.  This is not familiar; for 
classical optics the index of refraction is 
greater than 1. Recall vphase = c/n. Here vphase 
> c. (!)

Conductors (metals and plasmas) at high 

frequencies

ω0  = 0 and ω ≫ γ.

But ω may be < ωp .

Then ϵ(ω) = 1 – ωp
2 /ω2 can be ≪ 1 or even 

negative. (!)
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The Dispersion Relation for waves in a 

conductor at high frequencies;

e.g., a plasma.

The dispersion relation for EM waves in the 

material becomes strongly ω dependent,

c2 k2 = ϵ μ ω2 = ω2 – ωp
2   (μ = 1)

For ω < ωp ,

     ck = i ωp
2 – ω2

so the waves are damped ( b/c  k is imaginary).
E.g., microwaves cannot pass through a metal 
wall. Your cell phone may not work inside a 
building with metal construction.
Also, AM radio waves (535 - 1605 kHz) reflect 
from the ionosphere. Sky wave propagation.
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For ω > ωp ,

    ck =  ω2 – ωp
2  

so the waves propagate in the material ( b/c  k 
is real). For example, FM waves (88 - 108 
MHz) propagate through the ionosphere.
Note that the phase velocity is greater than 
the speed of light,
    vphase  = ω/k = c ω ω2– ωp

2   >  c .
Does that violate the theory of relativity?

(False statement: "Nothing can travel faster 
than the speed of light.")

The group velocity is less than the speed of light,

vgroup  = dω
dk  = c 1– ωp

2 ω2   <  c

vgroup * vphase  = c2

(True statement : "No signal can travel faster 
than the speed of light.")
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