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Section 9.7
The Kramers-Kronig Relations

We have the ‘simple model for the constitu-
tive equation for a dielectric material. It has a
complex effective permittivity e(w), which we
can apply when the fields are harmonic,

[m]

B 4 7 e? N,
fw)=1+ X m  wo*—w*—1wy

[m]

For example, suppose the fields have frequency w/(27),
E®@t) =Re{E(¥) e it}
D(%,t) = Re { D(¥) e "1}
Then
D(%) = e(w) E(X)
For a plane wave in the material,
E®@) =Eeik ¥,
The dispersion relation—the relation between
k and w—is
k*=u e(w) w*/c*.
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k* =u e(w) w? /c?

= If k is real then there is a propagating wave
with constant amplitude.

« If k has an imaginary part then the wave is

damped; i.e., the amplitude decreases as the
wave travels in the material.

So the complex function €(w) describes how
electromagnetic waves behave in the material.

An important question is, how are Re €(w) and
Im e(w) related? That is the issue in Section

9.7.




4 | 5.Waves5.0920.NB

2o
/1/ THE ELECTROMAGNETIC RESPONSE FUNCTION
First, what does the frequency dependence of
€(w) imply about the time dependence of the
physical fields? In frequency space,

D(X, w) = € (w) E(X, w).
For static fields (w = 0) we can write

D(X) = €(0) E(X).
But now consider general time-dependent

fields, D(%,t) and E(2,t), not necessarily
harmonic.
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Fourier Analysis
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We know D(Z,0) = €(w) E(X,w).

Now relate D(2,t) and E(Z,t).

o2
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The relation between 1_5( X,t) and E ( %,t) is non-
local in time. The kernel G(7) is called the
response function.
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The Response Function — what do we learn
from it?

By causality, G(7) = o for 7 < 0.

Therefore €(w) may have polesinthe LH w P
only.

(Recall the retarded Green's function; see Sec-
tion 8.6.)

Consequences:

mG(r)=oforrt<o0. [1]

m G(0-) = G(0+) = 0. “continuity” [2]
mG(t)— o0ast— oo. [3]

m G(7) is a finite function. [4]
Also, we will have

B e(w)—1~0(01/w?) asw— . [5]
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(You can show that Eq. 177 { e(w) — 1 ~
O(1/w?) } is true for the 'simple model'. But
the previous calculation proves it in general.)

Now the contour integral becomes

0 do)  €e(w)—1
—c0 27T W' —-w+1€

O =
(178)

Derivation of the Kramers-Kronig relations

First, recall the Plemelj formulae;
in the limite — o,

1 _ 1 . -
T —wtic =P o Finolw —w)

(179)
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So,
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These (182, 183) are the Kramers-Kronig
relations.
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A simplification

W' T
G(r) must be real. (See Egs. 170 and 171.) Re €lo) ~| = 2 Pf Ao’ /V:G/UZJ
wl_w

Therefore €(w*) = €e(—w). (See Eq. 172.)
T €09) = —2 Pfoo(ﬁ ¢ Re/w:)—-l

Re e(—w) = Re €(w) = Re €(w) is an even
function of w (w real)

Im e(—w) = — Im €(w) = Im €(w) is an odd
function of w (w real)

We can use these results to change the inte-
grals from —oo to +co into integrals from o to

+00.
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/3/ SUM RULES FOR THE “DIELECTRIC CONSTANT”
Quoting Wilcox ...
“ ... an important consequence of the Kramers-
Kronig dispersion relations, namely sum rules
for the dielectric constant €(w) ...”
The Sum Rule for the imaginary part of €(w)
Define plasma frequency w,
w?) =lim, . w? (1-€(w))
Now you can prove
2 _ 2 (o0
W, = ﬂfo dw w Im e(w)
[ Exercise 9.7.2 |
Wilcox verifies that the 'simple model' for e(w)
satisfies this equation, with the result

4 m%e?
wy = m__ bound
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The Sum Rule for the real part of € w)
From the Kramers-Kronig relations, you can

show

2

[Vdw[Ree(w)—1]1= 22 + ON3)

N is some large frequency
[ Exercise 9.7.2 |
Wilcox points out that the ‘simple model’ for
€(w) of a dielectric has

fooodw[Ree(a))—l]:o.

which is consistent with this general result.




