O-

Quick review of last week --
Complex Permittivity
$\epsilon(\omega)=1+\left(4 \pi \mathrm{e}^{2} / \mathrm{m}\right) n_{e}\left[\omega_{\mathrm{o}}^{2}-\omega^{2}-\mathrm{i} \gamma \omega\right]^{-1}$
Dielectric Response
$\mathrm{G}(\tau)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{\prime}}{2 \pi} e^{-i \omega^{\prime} \tau}\left[\epsilon_{\mathrm{eff}}\left(\omega^{\prime}\right)-1\right]$
Reading Assignment:
Wikipedia article "Permittivity" Section 6 - Dispersion and Causality

WAVE PACKETS, PLANE WAVES, PHASE VELOCITY AND GROUP VELOCITY
Go back to Maxwell's equations

$$
\begin{aligned}
& \nabla \times \vec{H}=\frac{1}{c} \dot{\vec{D}}+\frac{4 \pi}{c} \vec{J}_{\text {free }} \\
& \nabla \times \vec{E}=-\frac{1}{c} \dot{\vec{B}}
\end{aligned}
$$

Considering waves in the material, $\vec{J}_{\text {free }}=0$; and then recall from Friday,

$$
\begin{aligned}
& \vec{D}(\vec{x}, \mathrm{t})=\vec{E}(\vec{x}, \mathrm{t})+\int_{0_{-}}^{\infty} \mathrm{d} \tau \vec{E}(\vec{x}, \mathrm{t}-\tau) \mathrm{G}(\tau) \\
& \mathrm{G}(\tau)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{\prime}}{2 \pi} e^{-i \omega^{\prime} \tau}\left[\epsilon_{\mathrm{eff}}\left(\omega^{\prime}\right)-1\right]
\end{aligned}
$$

Maxwell's equations become (also, set $\mu=1$)

$$
\begin{aligned}
\nabla & \times \vec{B}=\text { (displacement current) } \\
& =\frac{1}{c} \frac{\partial}{\partial t} \vec{E}+\frac{1}{c} \int_{0_{-}}^{\infty} \mathrm{d} \tau \frac{\partial}{\partial t} \vec{E}(\vec{x}, \mathrm{t}-\tau) \mathrm{G}(\tau)
\end{aligned}
$$

(a)

$$
\text { and } \nabla \times \vec{E}=-\frac{1}{c} \frac{\partial}{\partial t} \vec{B}
$$

We can combine (a) and (b) to derive a new wave equation,

$$
\begin{aligned}
& \nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& \quad+\frac{1}{c^{2}} \int_{\mathrm{O}_{-}}^{\infty} \mathrm{d} \tau \quad \frac{\partial^{2}}{\partial t^{2}} \vec{E}(\vec{x}, \mathrm{t}-\tau) \mathrm{G}(\tau)
\end{aligned}
$$

This new wave equation is nonlocal in time. Causality.

4-
SECOND, transform from space (x) to reciprocal space (k).
Im|66 1)= scanW63

$$
\begin{aligned}
& u(x, t)=\operatorname{Re} \frac{1}{\sqrt{\sigma}} \int_{-\infty}^{\infty} d k e^{-i \omega(k) t}\left\{A(k) e^{i k x}\right\} \\
& \frac{\partial^{2} u}{\partial x^{2}}=\operatorname{Re} \frac{1}{\sqrt{2 \sigma}} \int_{-}^{n} d k e^{-i \omega t}\left(-k^{2}\right) A\left(c_{i}\right) e^{i k x} \\
& \frac{1}{c^{2}} \frac{\partial \partial^{2}}{\partial t^{2}}=\operatorname{Re} \frac{1}{\sqrt{2 t}} \int_{-\infty}^{\infty} d k e^{-i \omega t}\left(\frac{-u^{2}}{c^{2}}\right) A(t) e^{i k x} \\
& \frac{1}{c^{2}} \int_{a}^{a} d x \frac{\partial^{2}}{\partial t^{2}} u(x, t-z) G(c)=\frac{-1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \\
& +\operatorname{Re} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d k x e^{-i \omega t}\left[-\epsilon \frac{\omega^{2}}{c^{2}}\right] A(k) e^{i k x} \\
& \text { so to solve the PDE we need } \\
& k^{2}=\epsilon(\omega(u)) \frac{\omega^{2}(u)}{c^{2}} \text {. }
\end{aligned}
$$

$\mathrm{A}(\mathrm{k})$ (complex) would be calculated from boundary conditions at $t=0$.

The dispersion relation --relating ω and $\mathrm{k}--$ is, as usual,

$$
k^{2}=\epsilon_{\mathrm{eff}}(\omega) \omega^{2} / c^{2}
$$

Also, WT deduce some other analytic properties of the solutions,

- u(x,t) should be real ;
- $\mathrm{n}^{*}(-\omega)=\mathrm{n}(\omega) ;$
- $\omega^{*}(-\mathrm{k})=\omega(\mathrm{k})$.

CONSIDER A QUADRATIC DISPERSION RELATION

So far the analysis has been general.
Now specialize to a quadratic dispersion relation,

$$
\omega(\mathrm{k})=v\left(1+\frac{a^{2} k^{2}}{2}\right)
$$

Or, since $k^{2}=\epsilon \omega^{2} / c^{2}, \ldots$ a little algebra gives

$$
\epsilon(\omega)=\frac{2 c^{2}}{a^{2} \omega}\left(\frac{1}{v}-\frac{1}{\omega}\right)
$$

(we're taking $\mu=1$)

So, the 1D analogue problem has

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}+\frac{1}{c^{2}} \int_{o-}^{\infty} \mathrm{d} \tau \frac{\partial^{2}}{\partial t^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t}-\tau) \mathrm{G}(\tau) \tag{9.232}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{G}(\tau)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{\prime}}{2 \pi} e^{-i \omega^{\prime} \tau}\left[\epsilon\left(\omega^{\prime}\right)-1\right] \\
& \text { with } \quad \epsilon(\omega)=\frac{2 c^{2}}{a^{2} \omega}\left(\frac{1}{v}-\frac{1}{\omega}\right) \tag{9.233}
\end{align*}
$$

WT point out some problems with these equations (page 462). But then they say "let's just plow ahead and see what we get." After all, it is only an analogue problem, not electromagnetism.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}+\frac{1}{c^{2}} \\
& +\frac{1}{c^{2}} \int_{0-}^{\infty} d \tau \frac{\partial^{2}}{\partial t^{2}} x(x, t-\tau) G(\tau) \\
& =\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \\
& 2 / 2 t=-\frac{2}{\partial z} ; \\
& \text { integnate ly pourts } \\
& +\frac{1}{c^{2}} \int_{0-}^{\infty} d \tau U(x, t-\tau) \frac{d^{2} G}{d \tau^{2}} \\
& \frac{d^{2} G(t)}{d \tau^{2}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega e^{-i \omega \mathscr{Z}} \\
& {\left[\frac{2 c^{2}}{a^{2}}\left(1-\frac{i \omega}{i v}\right)+\omega^{2}\right]} \\
& =\frac{2 c^{2}}{a^{2}}\left[\delta(\tau)+\frac{1}{2 \nu} \delta^{\prime}(\tau)\right]-\delta^{\prime \prime}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}= \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \\
&+\frac{1}{c^{2}} \int_{0-}^{\infty} d \tau u(x, t-\tau) \\
& \quad\left[\frac{2 c^{2}}{a^{2}} \delta(\tau)+\frac{2 c^{2}}{a^{2} \nu} \delta^{\prime}(\tau)-\delta^{\prime \prime}(\tau)\right] \\
&= \frac{2}{a^{2}}\left[u-\frac{i}{\nu} \frac{\partial u}{\partial t}\right](x, t)
\end{aligned}
$$

Let $y(x, t)=u(x, t) e^{i v t}$

$$
\Rightarrow \quad-\frac{v a^{2}}{2} \frac{\partial z}{d x^{2}}=i \frac{\partial y}{\partial t}
$$

7-
What is the result?
It's the Schroedinger equation!

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} y}{\partial x^{2}}=\mathrm{i} \hbar \frac{\partial y}{\partial t}
$$

$$
\frac{\hbar}{2 m}=\frac{v a^{2}}{2}
$$

You know all about wave packet solutions of the Schroedinger equation, from courses on quantum mechanics. For example, Figure 9.12. You can read the rest of Section 9.9. Also, do Exercise 9.8.1 (homework assignment \#5).

Figure 9.12 - Real part and envelope at $\mathrm{t}=0$. How does it evolve in time?

In (665) $=$ Fig912

