1.

CHAPTER 11

Radiation by Systems and Point Particles

Lecture \#1 on Radiation

Section 11.1
E. M. radiation by systems: the harmonic formalism

How are E.M. waves created?
11.1 - E. M. radiation by systems: the harmonic formalism

The free-space retarded potentials, in the Lorenz gauge
EQS (11.1) AND (11.2)

$$
\begin{aligned}
& \Phi(\vec{x}, t)=\int d^{3} \mathrm{x}^{\prime} \frac{1}{R} \rho\left(\vec{x}^{\prime}, \mathrm{t}-\mathrm{R} / \mathrm{c}\right) \\
& \vec{A}(\vec{x}, t)=\int d^{3} \mathrm{x}^{\prime} \frac{1}{\mathrm{cR}} \vec{J}\left(\vec{x}^{\prime}, \mathrm{t}-\mathrm{R} / \mathrm{c}\right)
\end{aligned}
$$

where $\mathrm{R}=\left|\vec{x}-\vec{x}^{\prime}\right|$.
$=$ figF11p1

Fig. 11.1 Notation used in radiation calculations.
2.

Section 11.1: The Harmonic Formalism

Assume the sources are harmonic in time \Longrightarrow $e^{-i \omega t}$

The fields and potentials will have the same harmonic time dependence.

Solve for $\vec{A}(\vec{x}, \mathrm{t})$; also, the fields. The results are only valid for harmonic sources. This is interesting on its own right. And furthermore any time dependence can be written as a superposition of harmonic terms (Fourier analysis).

Assume $\rho(\vec{x}, \mathrm{t})=\rho(\vec{x}) e^{-i \omega t}$
and $\vec{J}(\vec{x}, \mathrm{t})=\vec{J}(\vec{x}) e^{-i \omega t}$
(!! Re is understood.) (!! $\rho(\vec{x})$ and $\vec{J}(\vec{x})$ may be complex functions.)
(!! Be careful, because we are using the same symbol for two different things; e.g., $\vec{J}(\vec{x}, t)$ and $\vec{J}(\vec{x})$.
Then $\vec{A}(\vec{x}, \mathrm{t})=\vec{A}(\vec{x}) e^{-i \omega t}$
and $\Phi(\vec{x}, \mathrm{t})=\Phi(\vec{x}) e^{-i \omega t}$.
We will always use the Lorenz gauge. So, if we calculate $\vec{A}(\vec{x})$ then $\Phi(\vec{x})$ is immediately also known.

$$
\nabla \cdot \vec{A}+(1 / c) \partial \Phi / \partial t=0 \Longrightarrow \Phi=c /(i \omega) \nabla \cdot \vec{A}
$$

\therefore We need to calculate ...

$$
\vec{A}(\vec{x}, t)=\int d^{3} \mathrm{x}^{\prime} \frac{1}{c R} \vec{J}(\vec{x}, \mathrm{t}-\mathrm{R} / \mathrm{c})
$$

where $\mathrm{R}=|\vec{x}-\vec{x}|$
3.

For a harmonic source,

$$
\begin{aligned}
& \vec{A}(\vec{x}, t)=\int d^{3} \mathrm{x}^{\prime} \frac{1}{c R} \vec{J}\left(\vec{x}^{\prime}\right) e^{-i \omega(t-R / c)} \\
& \quad=\vec{A}(\vec{x}) e^{-i \omega t}
\end{aligned}
$$

with

$$
\vec{A}(\vec{x})=\frac{1}{c} \int \frac{d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} e^{i(\omega / c)\left|\vec{x}-\vec{x}^{\prime}\right|}
$$

We probably cannot calculate the integral exactly, so we'll use some approximations. The most interesting aspect of the fields is the propagating wave; i.e., the fields in the "far zone".

In this problem there are three parameters with units of length.

- $\mathrm{d}=$ size of the radiating system
- $\lambda=$ wavelength of the E.M. waves

We' II see that $\lambda=2 \pi c / \omega$.

- $\mathrm{r}=$ distance from the radiating system to the point where we are observing the fields see Figure II.I.
min281]= figF11p1

Fig. 11.1 Notation used in radiation calculations.
The "far zone" is $\mathrm{r} \gg \mathrm{d}$ and $\mathrm{r} \gg \lambda$.
4.

The "Near Zone" Approximation
Consider $\mathrm{d} \ll \mathrm{r}$ and $\mathrm{r} \ll \lambda$.
Then $e^{i k R} \approx \exp \{\mathrm{i}(2 \pi / \lambda) \mathrm{r}\} \approx 1$.
So in the near zone,

$$
\vec{A}(\vec{x}) \approx \frac{1}{c} \int d^{3} \mathrm{x}^{\prime} \frac{\vec{J}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|}
$$

This is nothing but the "magnetostatic vector potential";
in other words, suppose $\vec{J}\left(\vec{x}^{\prime}, \mathrm{t}^{\prime}\right)=\vec{J}\left(\vec{x}^{\prime}\right)$
i.e., $\omega=0$).

The "Far Zone" Approximation

Consider $\mathrm{r} \longrightarrow \infty$; or, $\mathrm{r} \gg \mathrm{d}$ and $\mathrm{r} \gg \lambda$.
The far zone is also called the "radiation zone". These are the asymptotic fields - propagating away from the source.

Now, what is λ ?
For now, we have defined $\lambda \equiv 2 \pi \mathrm{c} / \omega$. The dimension of λ is length. When we show that waves are propagating away from the source, then we'll see that λ is in fact the wavelength of the asymptotic waves. They will not be plane waves. For a finite source, the outgoing waves will be spherical waves.
5.

We have (this is exact)

$$
\vec{A}(\vec{x})=\int \frac{d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right)}{c\left|\vec{x}-\vec{x}^{\prime}\right|} e^{\mathrm{ik}\left|\vec{x}-\vec{x}^{\prime}\right|}
$$

where $\mathrm{k} \equiv \omega / \mathrm{c}$.
In the far zone,

$$
\left|\vec{x}-\vec{x}^{\prime}\right|=\operatorname{SQRT}\left[r^{2}-2 \vec{x} \cdot \vec{x}^{\prime}+r^{\prime 2}\right]
$$

$\approx \mathrm{r}-\hat{n} \cdot \vec{x}^{\prime}+O\left(d^{2} / r\right)$ where $\hat{n}=\vec{x} / \mathrm{r}$.
Therefore (far zone approximation)

$$
\vec{A}(\vec{x})=\vec{A}_{\mathrm{rad}}(\vec{x})+\mathrm{O}\left(1 / r^{2}\right)
$$

where

$$
\begin{aligned}
\vec{A}_{\mathrm{rad}}(\vec{x})=\frac{e^{i k r}}{\mathrm{cr}} \int & d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right) \times \\
& \times \exp \left\{-\mathrm{ik} \hat{n} \bullet \vec{x}^{\prime}\right\}
\end{aligned}
$$

The result:

- a spherical wave : $(1 / \mathrm{r}) e^{i(\mathrm{kr}-\omega t)}$
- with angular modulation : $\overrightarrow{\mathscr{J}}(\mathrm{k} \hat{n})$

Define $\overrightarrow{\mathscr{V}}(\vec{k})=\frac{1}{c} \int d^{3} x^{\prime} \vec{J}\left(\vec{x}^{`}\right) \times$

$$
\times \exp \left\{-i \vec{k} \cdot \vec{x}^{‘}\right\}
$$

We have $\vec{A}_{\text {rad }}(\vec{x})=\left(e^{i k r} / \mathrm{r}\right) \overrightarrow{\mathscr{J}}(k \hat{n})$.
6.

The angular distribution of radiated power, in the far zone

First determine $\vec{B}_{\mathrm{rad}}(\vec{x})$ and $\vec{E}_{\mathrm{rad}}(\vec{x})$.
scanP11
Start with

$$
\underbrace{A_{r a d}}_{1}(\vec{x}, t)=\frac{e^{i k r}}{c r} \int d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right) e^{-i k \hat{n} \cdot \vec{x} \prime}
$$

\longrightarrow understood where $k \equiv \omega / c$.

$$
\begin{gathered}
\vec{B}=\nabla \times \vec{A}=\frac{1}{c} \int d^{3} x^{\prime} \nabla\left[\frac{e^{i h r}}{r} e^{-i l \hat{n} \cdot \vec{x}^{\prime}}\right] \times \vec{J}\left(\vec{x}^{\prime}\right) \\
\nabla[\ldots]=e^{i h\left(r-\hat{n} \cdot \vec{x}^{\prime}\right)}\left[\frac{i h}{r} \hat{n}-\frac{1}{r^{2}} \hat{n}-\frac{i k}{r} x_{j}^{\prime} \nabla \hat{n}_{j}\right] \\
\nabla r=\hat{n} \\
\nabla \hat{n}_{j}^{\prime}=\nabla\left(\frac{x_{j}^{\prime}}{r}\right)=\frac{\hat{e}_{j}}{r}-\frac{x_{j}^{\prime}}{r^{2}} \hat{n}
\end{gathered}
$$

$$
\begin{aligned}
\nabla\left[\prime_{\prime \prime}\right]= & e^{i k\left(r-\hat{n}-\vec{x}^{\prime}\right)} \\
& \left\{\frac{1}{r}(i k \hat{n})\right. \\
& +\frac{1}{\left.r^{2}\left(-\hat{n}-i k \vec{x}^{\prime}+i k\left(\hat{n} \circ \vec{x}^{\prime}\right) \hat{n}\right)\right\}} \\
& \hat{} \quad \hat{(1) \quad O(d / \lambda) \quad O(d / \lambda)} \\
& \quad N E G L E C T \text { because } \frac{i k}{r} \gg \frac{1}{r^{2}} \\
\nabla[\prime \prime \prime] \sim & e^{i k\left(r-\hat{n}-\vec{x}^{\prime}\right)} \frac{i k}{r} \hat{n}
\end{aligned}
$$

meal scanp13

$$
\begin{aligned}
& \vec{B}(\vec{x}) \sim \frac{1}{c} \int \vec{x}^{3} x^{\prime} e^{\left.i / k-\vec{n}-\vec{x}^{\prime}\right) \frac{i k}{r} \hat{n}} \begin{array}{l}
\quad \times \bar{J}\left(\vec{x}^{\prime}\right)
\end{array} \\
& =i k \frac{e^{i k r}}{c r} \hat{x} \times \int d^{3} x^{\prime} e^{-i k} \hat{x} \cdot \vec{x}^{\prime} \vec{J}\left(\vec{x}^{\prime}\right) \\
& =i k \hat{n} \times \vec{A}(\vec{x})
\end{aligned}
$$

Note: $\vec{B} \sim \frac{1}{r}$ in the far zone; and $\hat{n}, \vec{B}_{\text {rad }}=c$

$$
\begin{aligned}
& \text { Also, by Ampere's law (} \nabla \times \vec{B}=\frac{1}{c} \frac{\partial \vec{Z}}{\partial t} \text {) } \\
& \text { outside of te source. } \\
& \vec{E}=\frac{+i c}{\omega} \nabla \times \vec{B}=\frac{i}{k} \nabla \times[i k \hat{n} \times \vec{A}(\vec{x})] \\
& \text { - } \frac{\partial}{\partial x_{i}} x_{j} \text { is neglected in fur zone } \\
& \begin{array}{l}
-\frac{\partial}{\partial x_{i}} A_{k}=\frac{\partial}{\partial x_{i}} \frac{e^{i k r}}{c r} \int d^{3} x^{\prime} \tilde{J}_{k}\left(\bar{x}^{\prime}\right) e^{-i k \hat{n}_{n} \vec{v}} \\
\sim i k n_{i} \frac{e^{i l k r}}{c r}(\cdots)=i k n_{l}^{\prime} A_{k}
\end{array} \\
& \begin{aligned}
-\frac{\partial}{\partial x_{i}} A_{k} & =\frac{\partial}{\partial x_{i}} \frac{e^{i k r}}{c r} \int d_{x}^{\prime} \bar{\sigma}_{k}(\bar{x}) e^{-i k i n \cdot \bar{x}} \\
& \sim i k n_{i} \frac{e^{r h r}}{c r}(\cdots)=i k n_{l}^{\prime} A_{k}
\end{aligned} \\
& \text { Cr } \mathrm{Cr}_{\mathrm{C}}
\end{aligned}
$$

7.

Now, the angular distribution of radiated power

You'll need this for homework problem 6-5. Theorem.

Inl206] $=$ Show[Import["dPavg.png", "PNG"], ImageSize \rightarrow 768]

$$
\left(\frac{d P}{d \Omega}\right)_{\mathrm{avg}}=\frac{d a}{d \Omega}\left(\frac{d P}{d a}\right)_{\mathrm{avg}}=r^{2} \frac{c}{8 \pi} \operatorname{Re}\left(\hat{n} \cdot\left(\vec{E} \times \vec{B}^{*}\right)\right.
$$

Proof.
$\vec{S}(\vec{x}, \mathrm{t})=\frac{c}{4 \pi}\{\operatorname{Re} \vec{E}(\vec{x}, \mathrm{t})\} \times\{\operatorname{Re} \vec{B}(\vec{x}, \mathrm{t})\}$
Exercise. Show that the time average of $\vec{S}($ \vec{x}, t, for harmonic fields $\vec{E}(\vec{x}, \mathrm{t})$ and $\vec{B}(\vec{x}, \mathrm{t})$, is
$\vec{S}_{\text {avg }}(\vec{x})=\frac{c}{8 \pi} \operatorname{Re}\left\{\vec{E}(\vec{x}) \times \vec{B}^{*}(\vec{x})\right\}$
$(\mathrm{dP} / \mathrm{d} \Omega)_{\text {avg. }}=r^{2} \hat{n} \cdot \vec{S}_{\text {avg. }} \quad$ Q.E.D.

Now use $\vec{B}_{\mathrm{rad}}=\mathrm{ik} \hat{n} \times \vec{A}_{\mathrm{rad}}$ and $\vec{E}_{\mathrm{rad}}=\vec{B}_{\mathrm{rad}} \times$ \hat{n}.

Exercise. In the far zone,

$$
\begin{aligned}
& \frac{\mathrm{dP}}{\mathrm{~d} \Omega}=r^{2} \frac{c}{8 \pi} \hat{n} \bullet \operatorname{Re}\left\{(\vec{B} \times \hat{n}) \times \vec{B}^{*}\right\} \\
& =r^{2} \frac{c}{8 \pi}|\vec{B}|^{2} \Longleftarrow \vec{B}=\mathrm{ik} \hat{n} \times \vec{A} \\
& =r^{2} \frac{c}{8 \pi} k^{2}|\hat{n} \times \vec{A}|^{2} \\
& \quad \Uparrow \vec{A}=\left(e^{i \mathrm{kr}} / \mathrm{r}\right) \overrightarrow{\mathscr{J}}(k \hat{n})
\end{aligned}
$$

In(282)= Show[Import["eq1122.png", "PNG"], ImageSize \rightarrow 768]
smeens $\quad\left(\frac{d P}{d \Omega}\right)_{\text {avg }}=\frac{k^{2}}{8 \pi c}\left|\hat{n} \times \int d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right) e^{-i k \hat{n} \cdot \vec{x}^{\prime}}\right|^{2}$,

