2 | Rad1.1002.nb

1.

CHAPTER 11
Radiation by Systems and Point Particles

Lecture #1 on Radiation
Section 11.1
E. M. radiation by systems: the harmonic for-

malism

How are E.M. waves created?

11.1 — E. M. radiation by systems: the
harmonic formalism
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THE FREE-SPACE RETARDED POTENTIALS, IN THE
LORENZ GAUGE
EQsS (11.1) AND (11.2)

CI)(J_C’,t) = fd3x’ 1% p(X’,t—R/c)
AR 1) = [Jdx x J(R,t-R/0)

where R=|X-X"].
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Fig. 11.1 Notation used in radiation calculations.
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2.

SECTION 11.1 : THE HARMONIC FORMALISM

Assume the sources are harmonic in time =
e—l wt

The fields and potentials will have the same

harmonic time dependence.

Solve for A( 2,t); also, the fields.
The results are only valid for harmonic
sources. This is interesting on its own right.
And furthermore any time dependence can be
written as a superposition of harmonic terms
(Fourier analysis).
Assume p(¥, t) = p(X) e ¢!
and J(&,1) = J(X) e ¢!
(!l Re is understood.)
(! p(X) and T(X) may be complex
functions.)
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(!! Be careful, because we are using the same
symbol

for two different things; e.q., 7(x,t) and
702).)
Then A(R,t) = A(X) e ¢!
and OXt) = B(X) e '@l
We will always use the Lorenz gauge. So, if we

calculate A(X) then ®() is immediately also
known.

Ved+0/c) 00/ot=0= & = c/(iw)V A
. We need to calculate ...

-

AR t) = [dx J5 J(X,t-R/o)

—),|

where R=|X¥-%
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3. -3
For a harmonic source, In this problem there are three parameters

Z(J_f, t) = fd3x' CLR J&" e lw(t—R/c) with units of length.

m d = size of the radiating system

- m A = wavelength of the E.M. waves
with ,
We' ll see that A = 2nc/w .
f d3 x ' (x " e i(wfe)| -] m 1 = distance from the radiating system to
the point where we are observing the fields
We probably cannot calculate the integral See Figure 1.1 .
exactly, so we'll use some approximations. et poiy

.
daiia
o Xl =7)

.

The most interesting aspect of the fields is the

propagating wave; i.e., the fields in the "far

n :
zone . source region” %, R

Fig. 11.1 Notation used in radiation calculations.

The “far zone” isr> dand r > A.
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4.
THE “NEAR ZONE” APPROXIMATION

Consider d < r and r< A.

Then e'*R ~ exp{i(27/A)r} ~ 1.
So in the near zone,

!

. I
AR ~ ¢ Jdx |?c_?c)'|

This is nothing but the “magnetostatic vector

potential”;
in other words, suppose J(X',t) =J&") (

le., w=0).
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THE “FAR ZONE” APPROXIMATION

Consider r — oo ;or,r>dandr> A.
The far zone is also called the "radiation zone".

These are the asymptotic fields — propagating
away from the source.

Now, what is A?

For now, we have defined A = 27 ¢/w. The
dimension of A is length. When we show that
waves are propagating away from the source,
then we'll see that A is in fact the wavelength
of the asymptotic waves. They will not be
plane waves. For a finite source, the outgoing
waves will be spherical waves.




5.
We have (this is exact)

where k = w/c.
In the far zone,

| X=X'| = SQRT[r*—2X- X’ + r']

A

~r—nxX"+0(d?/r)wherefi =X /r.

Therefore ( far zone approximation)

A(R) = Apa(D) +0 (1/12)
where

Y - eikr i

Apa(®) = &= [ B x' T(27) %

xexp{—-ikfe+xX’}

The result:

B aspherical wave : (1/r) e!(kr-@?)

B with angular modulation : 7 (k i)

. . —_— 1 ' " ¢

Define 7 (k) = Efd?’x J(X°) x
xexp{—ike®*}

We have Aq(®) = (e*"/1) 7 (ki).
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6.

The angular distribution of radiated power,
in the far zone

First determine B,aq( X) and Eq( 3).
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scanP15
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7.

Now, the angular distribution of radiated

power

You'll need this for homework problem 6-S.
Theorem.

in206}= Show[Import["dPavg.png", "PNG"], ImageSize » 768]

dP da (dP 3 B R,
) =22(2) 2 LRe(n-(ExB)
(m:z)m,g a0 (a’.n. )1,& e (1 (B x B

Proof.
S(Rt) = 4% {Re E(X,t)} X {Re BE,1)}

Exercise. Show that the time average of §(
X,t), for harmonic fields E( %,t) and B( %,t), is
Save®) = g Re { E(¥) x B¥(}) }

(AP /dQ)ayg = 12 71+ Sayg.  Q.E.D.
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- " A — — -
Now use By,q =1k 1 X Apqq and E g = Brag X
.

Exercise. In the far zone,

B 2 feRe {(Bx ) x B}

- L B — B-ikax4
c R —

=r* g kK*|nixAl*®

m A=(~/r) 7 (k)

inezi- Show[Import["eqll22.png", "PNG"], ImageSize » 768]

2
fi % / B’ J(z)e— k| (11.22)

dP’ B k2
d(} s ~ 8&7e




