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CHAPTER 11
   Radiation by Systems and Point Particles

Lecture #1 on Radiation

Section 11.1
E. M. radiation by systems: the harmonic for-
malism

How are E.M. waves created?

11.1 – E. M. radiation by systems: the 
harmonic formalism
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The free-space retarded potentials, in the 

Lorenz gauge

Eqs (11.1) and (11.2)

   Φx, t =   ∫ d3x’   1
R   ρ( x ’ , t – R/c)

   Ax, t =   ∫ d3x’   1
cR  J ( x ’ , t – R/c)

where   R = | x – x ’ | .
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2.

Section 11.1 : The Harmonic Formalism

Assume the sources are harmonic in time ⟹ 
e–i ω t

The fields and potentials will have the same 

harmonic time dependence.

Solve for A( x,t); also, the fields.
The results are only valid for harmonic 
sources. This is interesting on its own right. 
And furthermore any time dependence can be 
written as a superposition of harmonic terms 
(Fourier analysis).

In[200]:= .

Assume  ρ(x, t) = ρ(x) e– i ω t

and  J (x , t) = J(x) e-i ω t

(!! Re is understood.)
(!! ρ(x ) and J( x ) may be complex 

functions.)
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(!! Be careful, because we are using the same 

symbol
for two different things; e.g., J (x ,t) and 

J (x ).)
Then A(x,t) = A( x) e -i ω t

and  Φ(x,t) = Φ( x) e-i ω t .
We will always use the Lorenz gauge. So, if we 
calculate A(x) then Φ(x) is immediately also 
known.
∇ • A  + (1/c) ∂Φ/∂t = 0 ⟹ Φ = c / (iω)∇ •A

∴  We need to calculate ...

   Ax, t =   ∫ d3x’   1
c R    J ( x’ , t – R/c) 

where   R = | x – x’ |
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3.
For a harmonic source,

   Ax, t =   ∫ d3x'  1
c R  J (x ') e-i ω ( t – R/c )

        = A( x) e-i ω t

with  

   A( x )   = 1
c   ∫   d3 x' J (x ')

x – x '    e i (ω/c) x - x '

We probably cannot calculate the integral 

exactly, so we'll use some approximations.

The most interesting aspect of the fields is the 

propagating wave; i.e., the fields in the "far 

zone". 
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In this problem there are three parameters 

with units of length.

◼  d = size of the radiating system

◼  λ = wavelength of the E.M. waves
We' ll see that  λ = 2πc/ω .

◼  r = distance from the radiating system to 
the point where we are observing the fields

See Figure 11.1 . 
In[281]:= figF11p1
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The “far zone” is r ≫ d and r ≫ λ. 
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4.

The “Near Zone” Approximation

Consider  d ≪ r  and  r ≪ λ .

Then e i k R  ≈  exp{ i (2π/λ) r } ≈ 1.
So in the near zone,

A( x)  ≈ 1
c  ∫ d3x’   J ( x '

x - x '
This is nothing but the “magnetostatic vector 

potential”;

in other words, suppose  J(x ', t') = J(x ')      ( 

i.e., ω = 0).
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The “Far Zone” Approximation

Consider  r ⟶ ∞ ; or, r ≫ d and r ≫ λ .
The far zone is also called the "radiation zone".

These are the asymptotic fields — propagating 

away from the source.

Now, what is λ?
For now, we have defined λ ≡ 2π c/ω.  The 
dimension of λ is length. When we show that 
waves are propagating away from the source, 
then we'll see that λ is in fact the wavelength 
of the asymptotic waves. They will not be 
plane waves. For a finite source, the outgoing 
waves will be spherical waves.
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5.
We have (this is exact)

   A(x) =  ∫   d3 x ' J (x ')
c x – x '    e ik x - x'

where k ≡ ω/c.

In the far zone,

   x – x ' = SQRT[ r2–2 x· x ’ + r '2] 

          ≈  r – n< · x ’ + O( d2 / r) where n<  = x /r .
Therefore  (  far zone approximation)

   A( x) = Arad( x) + O (1 / r2)
where

   Arad( x) = e i k r

cr  ∫  d3 x ' J( x ’) ⨯
                                   ⨯ exp{ –i k n<  • x ’ }
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The result:
▮  a spherical wave :  (1/r) e i ( kr – ω t ) 

▮  with angular modulation : J  (k n< )
.

Define J (k) = 1
c ∫  d

3 x ' J( x ‘) ⨯

                               ⨯ exp{ –i k • x ‘ }
.

We have  Arad(x) = ( e i k r/ r )  J (kn< ) .
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6.

The angular distribution of radiated power,
in the far zone

First determine Brad( x) and Erad( x).
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7.

Now, the angular distribution of radiated 
power

You'll need this for homework problem 6-5.
Theorem.

In[206]:= Show[Import["dPavg.png", "PNG"], ImageSize → 768]
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Proof.
 S( x,t) = c

4 π  {Re E(x,t)} × {Re B(x,t)}

Exercise. Show that the time average of S( 

x,t), for harmonic fields E( x,t) and B( x,t), is

Savg.(x) = c
8 π  Re { E( x) × B*( x) }

(dP /dΩ)avg. = r2 n<  • Savg.     Q.E.D.
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Now use Brad = ik n<  × Arad and Erad = Brad× 

n< .

Exercise.  In the far zone,
dP
dΩ  = r2 c

8 π  n<  • Re { (B × n< ) × B* }

   =  r2 c
8 π  B 2    ⟸   B = ik n<  × A

   = r2 c
8 π  k2 | n<  × A 2   

             ⇑  A = (eikr/r) J (k n< ) 
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