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CHAPTER 11

Radiation by systems and point particles

October 8
Lecture #3 on Radiation

Section 11.2: "E.M. radiation by systems; the

real source formalism"
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Electromagnetic radiation by systems;
the real source formalism

The “harmonic formalism” is for harmonic sys-
tems, like antennas.
Now we’ll consider arbitrary time dependence.
Start again with the potentials in the Lorenz
gauge,

O(Z) =[d3x (1/R) p(X’, t—R/c)

A(XD = [d3x 1/(cR) J(*,t—R/c)
where R=|X—-X"|

and here p(¥,t) and 7 (¥,t) are real .
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THE POTENTIALS IN THE FAR ZONE

For the far fields (i.e., r > d = size of the

source) we make these approximations,
R=|X-X"|~r—n+X"'+0(d?/r)
O(ZH) ~ (1/r) [ d*x' p(%',t,)
A(XD ~1/(cr) [dBx (%', t)

The exact retarded time is
[retarded = t — | X—-Xx’ |/C
But we are making this approximation

t.=t— (r—ne<x')/c

i}~ R3F2
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THE FIELDS IN THE FAR ZONE
Now we need to calculate

oA

B=VxA and E=-Vd - Dt

=

Note that A and ® depend t.. So we’ll need
this chain rule:
VIi(t)=Vf(t—-r/c+heX’/c)

%J; Vit. ~ 88—]; (—n/c)

Vr=5n (exact);

Vit =—-h/c+ o™,
so the approximation is valid for large r.

I. e., we can just replace V by —n/c (0/0t)
when it acts on t. dependence.

The magnetic field
B=VxA ; calculate I_B)Tad —

o= QONE

Ae) =L b Tzt

f*@: < —- |F-2'l]/e
= €t - Ye + ﬁ‘wyc

U [E‘;- f A F (% ia]

J—- V:cfd&‘ :?(i’jrr)

1-3‘_—. Tx A

I <t ()

Vi, =—-Vf..,z_%._
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The electric field
E=-Vd- 8X/d t ; calculate Erad

nfto1]= two

2
ws- three
-
é’_ -]_ aﬁ 4/‘\ four
— C —B—F K five
six

E= —v§ —+ 2
VE = VL (ete 6 Bz & Vfa}.f,o(:;f,_,

A
h

[ 9F - - 2 1y
=3[ 55 Ve = [ BB ()
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%E,(Eiw = = V. F(24Y)

W _%E(g/.b_g) =__§:F;(?:.y)

. t/=t= Rlc
A CATE
== { VI e-8) _ 3. 7Te-re) |
s
= ~V-F(Tt-7) + %g-.?;i "

72 " ar.fw’kid-””
VE = o[ {-viF(Fe-%0)

+ 23, A
23,

t
= —h { L fab EE
cr 7@ <

——
—

s A
- (3)-2

Rad3.1008.nb | 13




14 | Rad3.1008.nb

G
Summarize the results ...

B(,t)~ % %—‘;‘xﬁ

where A(%,t)~ 1/(cr) fd3x’ J(®,t)
and
E(X,t)~ B(X,t)xh

Comment. Note that E ~ B X fi and E2 ~ B2.
(The same is true in the harmonic formalism.)
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THE ANGULAR DISTRIBUTION OF RADIATED
POWER IN THE FAR ZONE
Start with

cr?

—> . ~
~ 4_7132 because B~ — = X %—‘? is L n

o=

dP _ r2 A (9:1)()_5,1‘) 2
dQY ~ 4rmc n X ot
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dQy — 4nc ot

dP(t) {ﬁ L JACGD }2

Qn.ss)
and

ARYD ~ 1/(cr) [dBx T(*,t.)
Equation (11.55) is the instantaneous power.

How does it compare to the time-averaged

power (11.22) in the harmonic formalism?

"/

For example, suppose
JE’,t)=JX) cos(wt").

> A(RD ~1/(cr) [dB3x T(*) (-w)sin (v t,)

= dA/dt~1/(cr) [d3x J(R7) (-w)sin (w t,)

- dP(t) /dQ ~

2

Amce (w/

er)? [ [d3x A xJ(®) sin(wt,) ]2

time average =

2 NN
807:03 [fd?’x’ AxJ(X)]?
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- Exercisell2l

Exercise 11.2.1. You are given the time dependent sources
(see Section 6.8 to see how these arise):

electric dipole at origin: p(z, 1) = —j(t) - Vi(3),

magnetic dipole at origin: j(#, 1) = —em(t) x V().

Starting with the exact formula in the real formalism,

derive the results (t, =t = r/c),
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Exercise 11.2.2, Consider a thin insulating ring of radius
a and charge density p(7") = poad(r’ - a)d(cos@)sing’ in
spherical coordinates, where ¢ is the usual azimuthal angle.
(We may set p, = A/a?, where A is a linear charge density.)
It is spun through its symmetry axis at a constant angular
velocity w. The charge density function becomes p(#’, t) =
Poad(r’ = a)d(cosd’) sin(¢" - wt).

(a) Show that its exact power distribution is
dP(t)  wpjwia®

dQ 43
—4Jo(z)J2(x) cos?{cp — wl‘-o)] !

[(Jo(z) + J2(z))? sin® ¥(to)

(ty = t = r/c) where J,,, J, are Bessel functions, x = ka sin
where k = w/c, and y(t,,) is defined as

ﬁ‘(l‘-nl “hli= |ﬁ(tu)| cosy(tp).

(b) Show that the time-averaged radiation rate is

where 1 is the usual polar angle. (Notice that this result
independent of ¢, as it should be.)




