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CHAPTER 11
   Radiation by systems and point particles

Lecture #4 on Radiation

Wednesday October 10

Section 11.3 : “Frequency distribution of radi-

ated energy; impulsive scattering”
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We have derived formulas to calculate radi-
ated power in the far zone.
◼ In the real source formalism we can calcu-

late the instantaneous power at position x,

   dP(t)/dΩ  = r2 / (4 πc) [ n)  × A
◼

( x,t) ]2

where   A( x,t) ≈ 1/(cr) ∫   d3 x ' J( x ’, tr) ;

   tr  = t - (r - n)  • x ’ )/c 
◼ In the harmonic formalism, using harmonic 
functions such as J(x,t) = J(x) e–iωt, we can cal-
culate the time-averaged power, (dP /dΩ)avg. .
Now we want to derive the frequency distribu-
tion for a source with arbitrary time 
dependence.
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11.3. Frequency distribution of radiated 
energy
The starting point is equation 11.54,

In[325]:= Eq1154

Out[325]=

The integrated energy , i.e., integrated over 
time, is

   dE
dΩ  =   ∫-∞

∞   dt dP(t)
dΩ

Now use Fourier analysis to transform from 
the time domain to the frequency domain. 
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We'll use these conventions for the Fourier 
integrals. Given a time dependent function 
f(t), define the transform to the frequency 
domain by
f

(ω) = 1/ 2 π   ∫–∞

∞ f (t) ei ω t dt ;

then the Fourier representation for f(t) is

f (t) = 1/ 2 π   ∫–∞
∞ f


(ω) e–i ω t dω ;

and by Parseval's theorem (Exercise 11.3.1, 

assigned as homework) 

∫–∞
∞  3 f (t) 4 2 dt = ∫–∞

∞    f

(ω) 2 dω
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Now apply Parseval’s theorem to equation 
(11.64).

In[372]:= R411

Out[372]=
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In[373]:= R412

Out[373]=
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So now we have 

   dE
dΩ = r2

2 π c ∫0
∞ ω2 ⅆω  | n)  × A


 (x,ω) 2

(11.73)
Now, dE/dΩ is the integral (over ω) of the dou-

ble differential energy distribution d2E / ( dω 

dΩ); so evidently we can identify

  d2 E
dω dΩ = r2 ω2

2 π c | n)  × A


 (x,ω) 2

Recall the asymptotic vector potential,

   A( x,t)  ≈     1/(cr) ∫   d3 x ' J( x ’, tr) ;
and rewrite it in frequency space
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A


( x,ω) = 1/ 2 π  ∫  dt e i ω t  1/(cr) 

       ⨯ ∫   d3 x '  J( x',  t–R/c )

= 1/ 2 π  ∫  dt e i ω t  1/(cr) ∫   d3 x ' 

       ⨯ 1/ 2 π ∫   J


( x’,  ω’ ) e–iω' (t-R/c) dω’ 

 = 1/(cr) ∫   d3 x '  J


( x ’,  ω ) e+i ω R/c 

 = e i k r/(cr)  ∫   d3 x '  J


( x ’,  ω ) e –i k (n.x') 
R = r - n.x'
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 d2 E
dω dΩ   = k2

2 π c | n)  × ∫  d3 x ' J


(x ', ω)   

e–i k n) ▪ x' 2

Note: k = ω/c

(11.75)
That is the general result. Given a current den-
sity J(x,t), we transform it to frequency space 
J


( x,ω). Then the above formula is the double 
differential distribution of energy as a func-
tion of frequency and solid angle. We'll need 
this equation in future lectures.
BTW, Wilcox points out that we could have 
guessed this result from equation (11.22), 
using the harmonic method.
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Example :  a charged particle undergoing 
impulsive scattering

First, what is impulsive scattering?
FIGURE 11.5.
A particle with mass m and charge e (not neces-
sarily a proton) is moving with constant veloc-
ity v1 for t < 0. At time t = 0 it is kicked ( ≡ 
impulsive force). Then for t > 0 it moves with 
constant velocity v2.
Calculate the energy radiated, as a function of 

frequency and solid angle.

   J( x ' ,t’) = e  v1 δ x ' - v1t’) for t’ < 0;

   J( x’ ,t’) = e  v2 δ x ' - v2t’) for t’ > 0;
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Some pretty straightforward calculations 

(page 580) give

∫  d3 x ' J


( x ' , ω) e–i k n) ▪ x' = 

= 1
2 π

  –i e v1
ω (1-n) ▪ v1/c)

  +  i e v2
ω (1-n) ▪ v2/c)



(11.79)
Therefore the distribution of radiated energy is

  d2 E
dω dΩ  = e2

4 π2 c3  |  n)  × ( v2
1-n) ▪ v2/c

  – 
v1

1-n) ▪ v1/c
) 2
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The nonrelativistic limit
Assume v1 ≪ c and v2 ≪ c.
Then

d2 E
dω dΩ  = e2

4 π2 c3 | n)  × ( v2 – v1 ) 2

For example, suppose  v1 = u ez and 
v2 = – u ez.
Then

      d2 E
dω dΩ  = e2 u2

π2 c3  sin2θ           !
What is strange about this?

The integral over ω is infinite.
In fact, dE/dω is independent of ω.
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We did assume an infinite impulse — an instan-
taneous change of velocity — an idealization.  
So the result is unphysical.
Angular dependence :
◼ no radiation parallel to the z axis;
◼ maximum radiation in the xy plane.
Wilcox makes an interesting comment about 
"transition radiation”, but this topic is not cov-
ered in the book. See Jackson?
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Wednesday October 10

Hint for Exercise 11.2.2.
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