2 \| Rad5.1012.nb $1 \cdot$	Rad5.1012.nb \| $\mathbf{3}$ $\cdot 1$
CHAPTER 11 Radiation by systems and point particles	11.4 - Multipole expansion; physical interpretation
Lecture \#5 on Radiation The classical theory of radiation $\begin{aligned} & \vec{J}(\vec{x}, \mathrm{t}) \\ & \Rightarrow \vec{A}(\vec{x}, \mathrm{t}) \\ & \Rightarrow \text { in the far zone, } \vec{A}, \vec{B}, \vec{E}, \vec{S} \\ & \Rightarrow \mathrm{dP}(\mathrm{t}) / \mathrm{d} \Omega \text { or the time average } \mathrm{dP}_{\mathrm{av}} / \mathrm{d} \Omega \\ & \Rightarrow d^{2} \mathrm{E} /(\mathrm{d} \Omega \mathrm{~d} \omega) \end{aligned}$ Sections 11.4 and 11.5 : Multipole expansions	We already know $\vec{A}(\vec{x}, \mathrm{t})$ in the far zone; i.e., $\vec{A}(\vec{x}, \mathrm{t})$ for $\mathrm{r} \gg \mathrm{d}$ and $\mathrm{r} \gg \lambda$; $\vec{A}(\vec{x}, \mathrm{t}) \approx \frac{1}{\mathrm{cr}} \int d^{3} \mathrm{x}^{\prime} \vec{J}\left(\vec{x}, t_{r}\right)$ where $\quad t_{r}=\mathrm{t}-(\mathrm{r}-\hat{n} \cdot \vec{x}) / \mathrm{c}$ Now, consider the limit $\mathrm{d} \ll \lambda$. If $\mathrm{d} \ll \lambda$, then we have something like a pointlike source; source size \ll any other parameters with dimension of length. We can expand in powers of d / λ. \Uparrow a Taylor series expansion.

2•
Let $t_{0}=\mathrm{t}-\mathrm{r} / \mathrm{c}$ (= the "origin retarded time")

Now, $\vec{J}\left(\vec{x}^{\prime}, t_{r}\right)$
$=\vec{J}\left(\vec{x}^{\prime}, t_{0}+\hat{n} \cdot \vec{x}^{\prime} / \mathrm{c}\right)$
$\approx \vec{J}\left(\vec{x}^{\prime}, t_{0}\right)+\left(\hat{n} \cdot \vec{x}^{\prime} / \mathrm{c}\right)(\partial J / \partial t)_{0}+O\left(d^{2}\right)$
Plug this expansion into the equation for $\vec{A}(\vec{x}, \mathrm{t})$
\Uparrow the multipole expansion.

3•

Coherency and Incoherency

Wilcox: "the multipole expansion is a perturbation approximation to deal with incoherency".
See Figure 11.
R5scan1

Fig. 11.6 Incoherency between radiation from different point sources, when $d \nless \lambda / 2 \pi$.

4"
11.5. Dipole and quadrupole contributions to radiated power

THE LOWEST ORDER TERM IN THE MULTIPOLE

 EXPANSION = ELECTRIC DIPOLE (EI) RADIATION$$
\vec{A}(\vec{x}, \mathrm{t})=\frac{1}{\mathrm{cr}} \int d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}, t_{\mathrm{o}}\right)
$$

where $t_{0}=\mathrm{t}-\mathrm{r} / \mathrm{c}$.
We are assuming that the source is bounded; size ~d.
So we can play an interesting trick.
By Gauss's theorem,

$$
\int d^{3} x^{\prime} \nabla^{\prime} \cdot\left\{x^{\prime}{ }_{k} \vec{J}\left(\vec{x}^{\prime}, t_{0}\right)\right\}=0
$$

because $\vec{J}=0$ on the surface at infinity. Thus,

$$
\begin{aligned}
& 0=\int d^{3} x^{\prime} J_{k}\left(\vec{x}^{\prime}, t_{0}\right)+\int \\
& d^{3} x^{\prime} x^{\prime}{ }_{k} \nabla^{\prime} \cdot \vec{J}\left(\vec{x}^{\prime}, t_{0}\right)
\end{aligned}
$$

By the continuity equation,
the second term

$$
\begin{aligned}
& =-(\partial / \partial \mathrm{t}) \int d^{3} x^{\prime} x^{\prime}{ }_{k} \rho\left(\vec{x}^{\prime}, t_{0}\right) \\
& =-\partial p_{k} / \partial \mathrm{t}=-\dot{p}_{k}\left(t_{\mathrm{o}}\right) ; \\
& \text { here } \vec{p}\left(t_{0}\right)=\int d^{3} x^{\prime} \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}, t_{0}\right)
\end{aligned}
$$

$=$ the dipole moment of the charge distribution, evaluated at the "origin retarded time"
Result:

$$
\vec{A}(\vec{x}, \mathrm{t})=\frac{1}{\mathrm{cr}} \overrightarrow{\vec{p}}\left(t_{\mathrm{o}}\right)
$$

vector potential of a pointlike electric dipole

8 | Rad5.1012.nb
\square The radiated power distribution is

$$
\begin{aligned}
& \frac{\mathrm{dP}(t)}{\mathrm{d} \Omega}=\frac{r^{2}}{4 \pi c}[\hat{n} \times \partial \vec{A} / \partial t]^{2} \\
& \quad=\frac{1}{4 \pi c^{3}}\left[\hat{n} \times \ddot{\vec{p}}\left(t_{0}\right)\right]^{2} \\
& \quad=\frac{1}{4 \pi c^{3}}\left[\ddot{\vec{p}}\left(t_{0}\right)\right]^{2} \sin ^{2} \theta\left(t_{0}\right)
\end{aligned}
$$

where $\theta\left(t_{0}\right)$ is the angle between \hat{n} and $\vec{p}\left(t_{0}\right)$; $\sin ^{2} \theta$ is called "dipole form".

Total instantaneous power
Integrate over angles \Longrightarrow

$$
\mathrm{P}(\mathrm{t})=\frac{2\left[\vec{p}\left(t_{0}\right)\right]^{2}}{3 c^{3}}
$$

Larmor' sformula

Consider a point particle, moving non-relativistically ($\mathrm{v} \ll \mathrm{c}$), with charge e and position $\vec{r}(\mathrm{t})$. The dipole moment with respect to the origin at retarded time t_{0} is $\vec{p}\left(t_{0}\right)=\mathrm{e}$ $\vec{r}\left(t_{0}\right)$.

$$
\begin{aligned}
& \frac{\mathrm{dP}(t)}{\mathrm{d} \Omega}=\frac{e^{2}}{4 \pi c^{3}}\left[\hat{n} \times \ddot{\vec{r}}\left(t_{0}\right)\right]^{2} \\
& \mathrm{P}(\mathrm{t})=\frac{2 e^{2} \ddot{\vec{r}}\left(t_{0}\right)^{2}}{3 c^{3}}=\frac{2 e^{2} \vec{a}\left(t_{0}\right)^{2}}{3 c^{3}}
\end{aligned}
$$

The N.L.O. TERM IN THE MULTIPOLE EXPANSION
Next, calculate the correction to electric dipole (E1) radiation.

$$
\begin{gathered}
\vec{A}(\vec{x}, \mathrm{t}) \approx \frac{1}{\mathrm{cr}} \int d^{3} \mathrm{x}^{\prime} \vec{J}\left(\vec{x}^{\prime}, t_{0}+\hat{n} \bullet \vec{x}^{\prime} / \mathrm{c}\right) \\
\approx \frac{1}{\mathrm{cr}} \int d^{3} \mathrm{x}^{\prime}\left\{\vec{J}\left(t_{0}\right)+\hat{n}^{\prime} \cdot \vec{x} / \mathrm{c} \overrightarrow{\vec{J}}\left(t_{0}\right)\right\} \\
(\mathrm{LO} \nearrow) \quad(\mathrm{NLO} \nearrow)
\end{gathered}
$$

Pages 584-587: The NLO term contributes both magnetic dipole (M1) and electric quadrupole (E2) contributions.

After some long calculations (3 pages) WT
derive these contributions,
$\left(\frac{\mathrm{dP}(t)}{\mathrm{d} \Omega}\right)_{\mathrm{M} 1}=\frac{1}{4 \pi c^{3}}\left[\hat{n} \times \ddot{\vec{m}}\left(t_{0}\right)\right]^{2}$
$\left(\frac{\mathrm{dP}(t)}{\mathrm{d} \Omega}\right)_{\mathrm{E} 2}=\frac{1}{144 \pi c^{5}}\left[\hat{n} \times \dddot{\vec{Q}}\left(\hat{n}, t_{0}\right)\right]^{2}$
Eqs. 114 and 118

Limitations of these results

- We have neglected interference between radiation from \ddot{p}, \ddot{m} and \ddot{Q}.
- WT give some more details on E2 radiation.
- We have only considered E1, M1 and E2.

R5scan 3
The results in this section are limited to the lowest three moments \vec{p}, \vec{m}. and $Q_{i j}$ from a dynamic charge distribution. For more complicated sources, many multipoles may be necessary. The situation is similar to the electrostatic case in Sections 5.1 and 5.2 , where the potential, or equivalently the charge distribution, was expanded in the spherical harmonics $Y_{l m}$. A similar spherical multipole formalism exists for harmonic radiation based upon the vector spherical harmonics,

These advanced topics are for the experts.
One other comment:

12 | Rad5.1012.nb
You probably studied E1, M1 and E2 radiation from an atom or a nucleus in nonrelativistic quantum mechanics.
6.

Homework Assignment 8
Reading: Chapter 11 Sections 6-9
Problems: A bunch of examples
Exercise 11.5.5
Exercise 11.5.6
Exercise 11.5.7
Exercise 11.5.8
Exercise 11.6.1
Exercise 11.6.2

