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CHAPTER 11
Radiation by systems and point particles

Lecture #5 on Radiation
The classical theory of radiation
J(2,)
= A(ZD)
= in the far zone, X, 1_3), E), S

= dP(t)/d() or the time average dP,,/d{}
= d’E / (dQ dw)

Sections 11.4 and 11.5 : Multipole expansions
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11.4 — Multipole expansion; physical
interpretation

We already know X( X,t) in the far zone;
ie., A(%t)forr>dandr > A;

AZY ~ o= [ &% J(@, t)

where t.=t-(r —n.X)/c

Now, consider the limit d <« A.

If d < A, then we have something like a point-
like source;

source size < any other parameters with
dimension of length.

We can expand in powers of d/A .

7t aTaylor series expansion.
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Lett, =t—r/c (= the “origin retarded

Now, J(%’,t.)

= J(X',to+=X/c)

~dJ (X', t))+(R=X"/c)(0J]It),+ O(d?)
Plug this expansion into the equation for
A

7 the multipole expansion.

..
Sut(50} ey,
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COHERENCY AND INCOHERENCY

Wilcox: “the multipole expansion is a perturba-
tion approximation to deal with incoherency”.

See Figure 11.

nis0p= R5scanl

(4

d™

“Source points

Fig. 11.6 Incoherency between radiation from different
point sources, when 4 « A /2x.
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11.5. Dipole and quadrupole contributions to
radiated power

THE LOWEST ORDER TERM IN THE MULTIPOLE
EXPANSION = ELECTRIC DIPOLE (E1) RADIATION

AR =& [ dBx' TR, t)
where t, =t —r/c.
We are assuming that the source is bounded;
size ~ d.
So we can play an interesting trick.
By Gauss's theorem,

fd3x' V's {x'kj(a?', to)}: 0
because J = 0 on the surface at infinity.
Thus,

o= [d3x' Ji (X', to) +

dBx' x'y V' J(®, to)
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By the continuity equation,

the second term
=3/ | &Bx" x'y p(R', to)

=~ 0p/dt=—Dulto);
here p(¢,) = f Px'x p(? ')
= the dipole moment of the charge distribution,
evaluated at the "origin retarded time”
Result:

= 1 :>
A(X,Y) = o plto) s
Eguation (11.92);
vector potential of a pointlike electric dipole
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The radiated power distribution is
2 —
dgg) = oc [Ax 04 /ot]

1
47c3

[AX B (t) P

1
4mcs

[ B (to) 12 sin? 6(t,)

where 0(t,) is the angle between #i and p(t,) ;
sin®f is called “dipole form” .
Total instantaneous power

Integrate over angles =

2[pto) I?

P(t) = 3 c3
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Larmor's formula

Consider a point particle, moving non-rela-
tivistically ( v < ¢ ), with charge e and posi-
tion 7*(t). The dipole moment with respect to
the origin at retarded time t, is p(t,) = e

(t,).

dP(t 2 . 3
dS()) = 47erc3 [ X 7(ty) |?
\acceleration
2Tty 2ed(ty)’
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5= Limitations of these results

THE N.L.O. TERM IN THE MULTIPOLE EXPANSION m We have neglected interference between radi-
Next, calculate the correction to electric ation from p , m and Q.
dipole (E1) radiation.

m WT give some more details on E2 radiation.
- - 1 3 9 4 -2 A -
A(x,t) =~ c—rfdx J(x,t0+n-x/c) )
_ m We have only considered E1, M1 and E2.
1 s — ~ ) 4 - RS 3
= @ {T(ty) + =R /e T (to) }
The results in this section are limited to the
(LO) (NLO.) B}
lowest three moments 7, m. and Q; from a
dynamic charge distribution. For more
complicated sources, many multipoles may be
necessary. The situation is similar to the

Pages 584 - 587: The NLO term contributes
both magnetic dipole (M1) and electric

quadrupole (E2) contributions. = electrostatic case in Sections 5.1 and 5.2, where
' . the potential, or equivalently the charge
After some long calculations (3 pages) W1 distribution, was expanded in the spherical

derive these contributions, harmonics Y},;,. A similar spherical multipole

( dP(t)

formalism exists for harmonic radiation based
A - 2 upon the wvector spherical harmonics
[AXx m (to) ] P P ’

)M1 = 47TC3

dP(t) m [ 7 x 6 f, t) |2 These advanced topics are for the experts.

(a0

)E2

Egs. 114 and 113 One other comment:
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You probably studied E1, M1 and E2 radiation
from an atom or a nucleus in nonrelativistic
quantum mechanics.
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6.
Homework Assignment 8

Reading: Chapter 11 Sections 6-9

Problems: A bunch of examples
Exercise 11.5.5
Exercise 11.5.6
Exercise 11.5.7
Exercise 11.5.8
Exercise 11.6.1
Exercise 11.6.2




