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CHAPTER 11
Radiation by systems and point particles

Lecture #5 on Radiation
The classical theory of radiation
J( x,t)
⇒ A( x,t)
⇒ in the far zone, A, B, E, S
⇒ dP(t)/dΩ or the time average dPav/dΩ
⇒ d2E / (dΩ dω)
Sections 11.4 and 11.5 : Multipole expansions
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11.4 — Multipole expansion; physical 
interpretation

We already know A( x,t) in the far zone;
i.e., A( x,t) for r ≫ d and r ≫ λ;
A( x,t) ≈ 1

cr  ∫  d3x’  J ( x’,  tr )
where     tr = t - (r  – n*  . x’ )/c
.

Now, consider the limit d ≪ λ.
If d ≪ λ, then we have something like a point-
like source;
source size ≪ any other parameters with 
dimension of length.
We can expand in powers of d/λ .
⇑   a Taylor series expansion.
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Let t0 = t – r/c   (= the “origin retarded 

time”)

Now,  J( x ’, tr ) 

   =  J( x ' , t0 + n*  ▪ x ‘/c ) 

   ≈  J  ( x ' , t0) + (n* ▪ x '/c ) (∂J / ∂ t)0+ O(d2)

Plug this expansion into the equation for 

A(x,t)

⇑  the multipole expansion.
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Coherency and Incoherency

Wilcox: “the multipole expansion is a perturba-
tion approximation to deal with incoherency”.
See Figure 11.
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11.5. Dipole and quadrupole contributions to 
radiated power

The lowest order term in the multipole 

expansion = Electric dipole (E1) radiation

      A( x,t) = 1
cr  ∫  d3 x '  J x ', t0

where t0 = t – r/c.
We are assuming that the source is bounded; 
size ~ d.
So we can play an interesting trick.
By Gauss's theorem,

   ∫  d3 x ' ∇ ' ▪  x 'k J x ', t0  = 0 

because J  = 0 on the surface at infinity.

Thus,

  0 =  ∫  d3 x ' Jk x ', t0  + ∫  

d3 x ' x 'k ∇ ' ▪ J x ', t0) 
By the continuity equation,

the second term 

    = –(∂/∂t) ∫  d3 x ' x 'k ρx ', t0)

    = – ∂ pk/∂ t = – p
◼

k(t0) ;
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By the continuity equation,

the second term 

    = –(∂/∂t) ∫  d3 x ' x 'k ρx ', t0)

    = – ∂ pk/∂ t = – p
◼

k(t0) ;
here p (t0) = ∫  d 3 x ' x ' ρx ', t0) 

= the dipole moment of the charge distribution,
evaluated at the "origin retarded time” 

Result:

    A( x,t) = 1
cr  p

◼
(t0) ;

 Equation (11.92);
vector potential of a pointlike electric dipole
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 The radiated power distribution is

 dP(t)
dΩ  = r2

4 π c  [n*  × ∂ A  ∂ t2

    = 1
4 π c3  [ n*  ×  p

¨
(t0) ]2

    = 1
4 π c3  [ p

¨
(t0) ]2 sin2 θ(t0)

where θ(t0)  is the angle between n*  and p(t0) ;
sin2θ is called “dipole form” .

 Total instantaneous power

Integrate over angles ⟹

   P(t) = 2 [ p(t0) ]2

3 c3
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Larmor' s formula
Consider a point particle, moving non-rela-
tivistically ( v ≪ c ), with charge e and posi-
tion r(t).  The dipole moment with respect to 
the origin at retarded time t0 is  p(t0) = e  
r(t0).

  dP(t)
dΩ  = e2

4 π c3  [ n*  ×  r̈ (t0) ]2

                                \acceleration\

  P(t) = 2 e2 r̈(t0)
2

3 c3  = 2 e2 a(t0)2

3 c3
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The N.L.O. term in the multipole expansion

Next, calculate the correction to electric 
dipole (E1) radiation.
  A( x,t) ≈ 1

cr  ∫  d3x’  J  x ',  t0 + n* • x '/c)

≈ 1
cr ∫  d

3x’ { J( t0 ) + n* ▪ x’/c  J
◼

( t0) }
                       (LO↗)          (NLO↗)

Pages 584 - 587: The NLO term contributes 
both magnetic dipole (M1) and electric 
quadrupole (E2) contributions.
.

After some long calculations (3 pages)  WT 

derive these contributions,

( dP(t)
dΩ ) M1  = 1

4 π c3  [ n*  ×  m
¨
(t0) ]2 

( dP(t)
dΩ ) E2 = 1

144 π c5  [ n*  ×  Q
D
(n ,* t0) ]2 

Eqs. 114 and 118
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Limitations of these results
◼ We have neglected interference between radi-

ation from p̈ , m̈ and Q
D

.

◼ WT give some more details on E2 radiation.

◼ We have only considered E1 , M1 and E2.
In[33]:= R5scan3

Out[33]=

These advanced topics are for the experts.

One other comment:
You probably studied E1, M1 and E2 radiation 
from an atom or a nucleus in nonrelativistic 
quantum mechanics.
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One other comment:
You probably studied E1, M1 and E2 radiation 
from an atom or a nucleus in nonrelativistic 
quantum mechanics.
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Homework Assignment 8
,

Reading: Chapter 11 Sections 6-9
,

Problems: A bunch of examples
Exercise 11.5.5
Exercise 11.5.6
Exercise 11.5.7
Exercise 11.5.8
Exercise 11.6.1
Exercise 11.6.2
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