
Section 11.8
Radiation by a particle in periodic motion

Review: Energy radiated by a moving charge
Using the real source formalism ...
Let r(t) be the particle trajectory in three 
dimensions.
We already know
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where χ is defined by 

χ( n
⋀
,ω) ≡ ∫–∞

∞  dt v(t)  eiω t e–i (ω /c) n
⋀
▫ r(t)

| x – r(t) | ≈ x| – n
⋀
 • r(t) 

Then

d2 E
dω dΩ  = e2 ω2

4 π2 c3 n
∧
 × χ 2

R8.nb     3



Periodic motion
Actually, the motion cannot extend over infi-
nite time. We’ll divide the time axis into three 
parts:
τ1 = (–∞,–NT) where N is a large integer;
τ2 = (–NT, +NT); 2N cycles with period T;
τ3 = (+NT, ∞)
For t ∈ τ1 the particle is starting to move;
for t ∈ τ2 the motion is periodic;
For t ∈ τ3 the particle is stopping.
.

χ =  { ∫–∞
–NT + ∫–NT

+NT + ∫ +NT
+∞  }

▫  dt v(t)  eiω t e–i n5 ▫ r(t) c
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χ =  χstart + χstop  + 

▫  ∫–NT
+NT dt v(t)  eiω t e–i (ω/c) n5 ▫ r(t)

χ =  χstart + χstop  + χN

χN = ∑ n=–N
N–1

∫ nT
(n+1) T dt v(t)

▫  eiω t e–i k n5 ▫ r(t)

The precise way in which the motion starts 
and stops is not important, but χstart and χstop 
must be finite and independent of N; 2N is the 
number of periodic cycles.
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Evaluation of χ for the periodic motion, τ2.
Consider the cycle from t = nT to t = (n+1) T;
n = –N , –N+1, –N+2 , ... , N–2, N–1. 
Now let t’ = t – nT.
Then 0 ⩽ t’ ⩽ T.
Change the integration over this cycle into the 
integral over t’ from 0 to T. The point is, all 
the integrals are equal because of the periodic-
ity,
r(t’+nT) = r(t’) and v(t’+nT) = v(t’).
Result

χN = ( ∑
n=–N

N–1
ei (ωT) n ) 

▫  ∫0
T dt’ v(t’) eiω t' – k n

⋀
• r(t')

The integral does not depend on n.
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So far we have
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The calculation of Q(ω)
Q(ω) = limN⟶∞ 

  1
2 NT  Σ

n,n'=–N

N–1
 e iωT (n–n')

In the limit N ⟶ ∞, Q(ω) is a 'periodic delta 
function' .
The final result is,

Q(ω) =  
ω0

2

2 π   Σ
m=1

∞

  δ(ω – m ω0)

where ω0 = 2 π
T .

So, the spectrum of waves produced by the peri-
odic motion of the particle is discrete : it con-
sists of all harmonics of the fundamental fre-
quency ω0 = 2π /T; i.e., ω = ω0, 2ω0, 3ω0, 4 
ω0 , ...
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Powers radiated into the various harmonics
We have this result

d2 P(ω)
dω dΩ  = Σm=1

∞  
e2 ω0

4 m2

(2 π c)3  δ(ω – mω0)

▫ n
⋀
 × ∫ 0

T dt’ v(t’) e i mω0 t' e–i m k0 n
⋀
• r(t') 2

Or,

d2 P(ω)
dω dΩ  =  Σm=1

∞  δ(ω – mω0) 
dPm
dΩ

where

dPm
dΩ  = 

e2 ω0
4 m2

(2 π c)3

   ▫ n
⋀
 × ∫ 0

T dt’ v(t’) e i mω0 t' e–i m k0 n
⋀
• r(t) 2

   = angular distribution of power radiated to 

the m-th harmonic.
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Each m value behaves as an independent 
harmonic source
WT also derive these results:

dPm
dΩ  = (mω0)2 r2

8 π c  | n
⋀
 × Am(x) 2

where

Am( x) = ei m k0 r

c r  ∫  d3 x ' Jmx ' e–i m k0 n
⋀
• x'

and

Jm( x) = eω0
π  ∫0

T dt  v(t) δ(x – r(t) ) ei mω0 t
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