$2 \mid R 8 . n b$

Section 11.8

Radiation by a particle in periodic motion
Review: Energy radiated by a moving charge
Using the real source formalism ...
Let $\vec{r}(\mathrm{t})$ be the particle trajectory in three dimensions.
We already know
$\ln (1355)=$ scan 81

$$
\begin{aligned}
\frac{d^{2} E}{d \omega d \Omega} & =\frac{\omega^{2} r^{2}}{2 \pi c}|\hat{n} \times \vec{A}(\vec{x}, \omega)|^{2} \\
\vec{A}(\vec{x}, \omega) & =\frac{1}{c r} \int_{-a}^{\infty} \frac{d t}{\sqrt{2 \pi}} e^{i \omega t} \int d^{3} x^{\prime} \overrightarrow{\vec{I}}\left(\vec{x}^{\prime}, t r\right) \\
& =\frac{e^{i h r}}{c r} \int^{3} d^{3} x \vec{J}\left(\vec{x}^{\prime}, \omega\right) e^{-i k \hat{n} \cdot \vec{x}^{\prime}} \quad \text { (71)(212) } \\
\vec{J}(\vec{x}, t) & =e^{\vec{v}(t) \delta^{3}(\vec{x}-\vec{r}(t))} \\
\vec{A}(\vec{x}, \omega) & =\frac{e^{i h r}}{c r} \frac{e}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t \vec{v}(t) e^{i \omega\left(t-\frac{1}{c} \hat{n} \cdot \vec{r}(t)\right)} \\
\therefore \frac{d^{2} E}{d \omega d \Omega} & =\frac{e^{2} \omega^{2}}{4 \pi^{2} c^{3}}|\hat{m} \times \vec{x}|^{2} \equiv \vec{x}
\end{aligned}
$$

where $\vec{\chi}$ is defined by

$$
\begin{aligned}
\vec{\chi}(\hat{n}, \omega) \equiv \int_{-\infty}^{\infty} \mathrm{dt} \vec{v}(\mathrm{t}) & e^{i \omega t} e^{-i(\omega / c) \hat{n} 口 \vec{r}(t)} \\
& |\vec{x}-\vec{r}(\mathrm{t})| \approx|\vec{x}|-\hat{n} \bullet \vec{r}(\mathrm{t})
\end{aligned}
$$

Then
$\frac{d^{2} E}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c^{3}}|\stackrel{\wedge}{n} \times \vec{\chi}|^{2}$

Periodic motion

Actually, the motion cannot extend over infinite time. We'll divide the time axis into three parts:
$\tau_{1}=(-\infty,-\mathrm{NT})$ where N is a large integer;
$\tau_{2}=(-\mathrm{NT},+\mathrm{NT}) ; 2 \mathrm{~N}$ cycles with period T ;
$\tau_{3}=(+\mathrm{NT}, \infty)$
For $t \in \tau_{1}$ the particle is starting to move; for $t \in \tau_{2}$ the motion is periodic; For $\mathrm{t} \in \tau_{3}$ the particle is stopping.
$\vec{\chi}=\left\{\int_{-\infty}^{-\mathrm{NT}}+\int_{-\mathrm{NT}}^{+\mathrm{NT}}+\int_{+\mathrm{NT}}^{+\infty}\right\}$

- $\mathrm{dt} \vec{v}(\mathrm{t}) e^{i \omega t} e^{-i \hat{n} \Delta \vec{r}(t) / c}$

$$
\begin{aligned}
& \vec{\chi}=\vec{\chi}_{\text {start }}+\vec{\chi}_{\text {stop }}+ \\
& \square \int_{-\mathrm{NT}}^{+\mathrm{NT}} \mathrm{dt} \vec{v}(\mathrm{t}) e^{i \omega t} e^{-i(\omega / \mathrm{c}) \hat{n} \square \vec{r}(t)} \\
& \vec{\chi}=\vec{\chi}_{\text {start }}+\vec{\chi}_{\text {stop }}+\vec{\chi}_{N} \\
& \vec{\chi}_{N}=\sum_{n=-N}^{N-1} \int_{\mathrm{nT}}^{(n+1) T} \mathrm{dt} \vec{v}(\mathrm{t}) \\
& -e^{i \omega t} e^{-i k \hat{n} \cdot \vec{r}(t)}
\end{aligned}
$$

The precise way in which the motion starts and stops is not important, but $\chi_{\text {start }}$ and $\chi_{\text {stop }}$ must be finite and independent of $\mathrm{N} ; 2 \mathrm{~N}$ is the number of periodic cycles.

Evaluation of \vec{x} for the periodic motion, τ_{2}.

Consider the cycle from $\mathrm{t}=\mathrm{nT}$ to $\mathrm{t}=(\mathrm{n}+1) \mathrm{T}$;

$$
\mathrm{n}=-\mathrm{N},-\mathrm{N}+1,-\mathrm{N}+2, \ldots, \mathrm{~N}-2, \mathrm{~N}-1 .
$$

Now let $t^{\prime}=\mathrm{t}-\mathrm{nT}$.
Then $0 \leqslant t \leqslant T$.
Change the integration over this cycle into the integral over t ' from 0 to T . The point is, all the integrals are equal because of the periodicity,
$\vec{r}\left(\mathrm{t}^{\prime}+\mathrm{nT}\right)=\vec{r}\left(\mathrm{t}^{\prime}\right)$ and $\vec{v}\left(\mathrm{t}^{\prime}+\mathrm{nT}\right)=\vec{v}\left(\mathrm{t}^{\prime}\right)$.
Result

$$
\begin{aligned}
& \vec{\chi}_{N}=\left(\sum_{n=-N}^{N-1} e^{i(\omega \mathrm{~T}) n}\right) \\
& \square \int_{0}^{T} \mathrm{dt}^{\prime} \vec{v}\left(\mathrm{t}^{\prime}\right) e^{i \omega\left(t^{\prime}-k \hat{n} \cdot \vec{r}\left(t^{\prime}\right)\right)}
\end{aligned}
$$

The integral does not depend on n.

So far we have
$\ln (1356)=$ scan 82

$$
\begin{aligned}
& \frac{d^{2} E}{d \omega d \Omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c^{3}}\left(\hat{n} \times\left.\left(\vec{x}_{\text {start }}+\vec{x}_{\text {shop }}+\vec{x}_{N}\right)\right|^{2}\right. \\
& \frac{d^{2} P(\omega)}{d \omega d \Omega}=\lim _{N \rightarrow \infty} \frac{1}{2 N T}\left(\frac{d^{2} E}{d \omega l \Omega}\right) \\
& \vec{x}_{\text {start }} \text { and } \vec{x}_{\text {stop }} \text { are ind,endat \% } N \\
& \text { so they drop ont of the limit, } \\
& \left.\frac{d^{2} P(\omega)}{d \omega d \Omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c^{3}} Q(\omega) \right\rvert\, \hat{n} \times \int_{0}^{T} d t \vec{v}(t) \\
& Q(\omega)=\lim _{N \rightarrow \infty} \frac{1}{2 N T} \sum_{n, n^{\prime}}^{N-1}=-N
\end{aligned}
$$

The calculation of $Q(\omega)$

$$
\begin{aligned}
& \mathrm{Q}(\omega)=\lim _{N \rightarrow \infty} \\
& \frac{1}{2 \mathrm{NT}} \sum_{n, n^{\prime}=-N}^{N-1} e^{i \omega \mathrm{~T}\left(n-n^{\prime}\right)}
\end{aligned}
$$

In the limit $\mathrm{N} \longrightarrow \infty, \mathrm{Q}(\omega)$ is a 'periodic delta function'
The final result is,
$\mathrm{Q}(\omega)=\frac{\omega_{0}^{2}}{2 \pi} \sum_{m=1}^{\infty} \delta\left(\omega-\mathrm{m} \omega_{0}\right)$
where $\omega_{0}=\frac{2 \pi}{T}$.
So, the spectrum of waves produced by the peri odic motion of the particle is discrete : it consists of all harmonics of the fundamental frequency $\omega_{0}=2 \pi /$ T; i.e., $\omega=\omega_{0}, 2 \omega_{0}, 3 \omega_{0}, 4$ ω_{0}, \ldots

Powers radiated into the various harmonics

We have this result

$$
\frac{d^{2} P(\omega)}{\mathrm{d} \omega \mathrm{~d} \Omega}=\sum_{m=1}^{\infty} \frac{e^{2} \omega_{0}^{4} m^{2}}{(2 \pi c)^{3}} \delta\left(\omega-\mathrm{m} \omega_{0}\right)
$$

- $\left|\hat{n} \times \int_{0}^{T} \mathrm{dt}^{\prime} \vec{v}\left(\mathrm{t}^{\prime}\right) e^{i \mathrm{~m} \omega_{0} t^{\prime}} e^{-i m k_{0} \hat{n} \bullet \vec{r}\left(t^{\prime}\right)}\right|^{2}$

Or,
$\frac{d^{2} P(\omega)}{\mathrm{d} \omega \mathrm{d} \Omega}=\sum_{m=1}^{\infty} \delta\left(\omega-\mathrm{m} \omega_{0}\right) \frac{\mathrm{dP}_{m}}{\mathrm{~d} \Omega}$
where

$$
\begin{aligned}
\frac{\mathrm{dP}_{m}}{\mathrm{~d} \Omega} & =\frac{e^{2} \omega_{0}^{4} m^{2}}{(2 \pi c)^{3}} \\
\quad & \left|\hat{n} \times \int_{0}^{T} \mathrm{dt}^{\prime} \vec{v}\left(\mathrm{t}^{\prime}\right) e^{i \mathrm{~m} \omega_{0} t^{\prime}} e^{-i m k_{0} \hat{n} \bullet \vec{r}(t)}\right|^{2}
\end{aligned}
$$

$=$ angular distribution of power radiated to the m -th harmonic.
$10 \mid R 8 . n b$
Each m value behaves as an independent harmonic source
WT also derive these results:

$$
\frac{\mathrm{dP}_{m}}{\mathrm{~d} \Omega}=\frac{\left(\mathrm{m} \omega_{0}\right)^{2} r^{2}}{8 \pi c}\left|\hat{n} \times \vec{A}_{m}(\vec{x})\right|^{2}
$$

where

$$
\vec{A}_{m}(\vec{x})=\frac{e^{i m k_{0} r}}{c r} \int d^{3} x^{\prime} \vec{J}_{m}\left(\vec{x}^{\prime}\right) e^{-i m k_{0} \hat{n} \cdot \vec{x}^{\prime}}
$$ and

$$
\vec{J}_{m}(\vec{x})=\frac{e \omega_{0}}{\pi} \int_{0}^{T} \mathrm{dt} \vec{v}(\mathrm{t}) \delta(\vec{x}-\vec{r}(\mathrm{t})) e^{i \mathrm{~m} \omega_{0} t}
$$

