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In[107]:= Remove[dir0, dir1]

dir0 = "/Users/OurMacBookAir/Documents"

dir1 =

"/Teaching.2018.current/chapter11.current/RadLecs

.999"

SetDirectory[StringJoin[dir0, dir1]]

FileNames["*.png"]
Out[108]= /Users/OurMacBookAir/Documents

Out[109]= /Teaching.2018.current/chapter11.current/RadLecs

.999

Out[110]= /Users/OurMacBookAir/Documents/Teaching.2018.

current/chapter11.current/RadLecs.999

Out[111]= {1191.png, R9.shot1.png,

R9.shot2.png, R9.shot3.png, R9.shot4.png}
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In[170]:= shot1 =

Show[Import["R9.shot1.png"], ImageSize → 768];

shot2 = Show[Import["R9.shot2.png"],

ImageSize → 768];

shot3 = Show[Import["R9.shot3.png"],

ImageSize → 768];

shot4 = Show[Import["R9.shot4.png"],

ImageSize → 768];

figR91 = Show[Import["1191.png"], ImageSize → 768];

scanR91 = Show[Import["sc1.png"], ImageSize → 768];

scanR92 = Show[Import["sc2.png"], ImageSize → 768];
Import: File not found during Import.

Show: Symbol is not a type of graphics.

Import: File not found during Import.

Show: Symbol is not a type of graphics.
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Synchrotron Radiation
In[166]:= shot1

shot2

shot3

shot4

Out[166]=
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Out[167]=
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Out[168]=
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Out[169]=
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1-
Synchrotron Radiation
Section 11.9

A charged particle (e) in circular periodic motion ...
See Figure 11.12.

In[177]:= figR91

Out[177]=

r(t) = R { cos(ω0t), sin(ω0t), 0 }
v(t) = Rω0 {–sin(ω0t), cos(ω0t), 0 }
.

By cylindrical symmetry around the z axis, 
W.L.O.G. we can let the field observation point be 
in the xz plane, i.e., ϕ = 0.
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By cylindrical symmetry around the z axis, 
W.L.O.G. we can let the field observation point be 
in the xz plane, i.e., ϕ = 0.
.

n
⋀
 = (sinθ,0,cosθ)
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◼ The average power radiated (= E/T = 
energy radiated in one cycle / 
period) ; the angular distribution 
...
.

From the last lecture, the power distribution for 
the m-th harmonic is

In[178]:= scanR91
Out[178]= Show[$Failed, ImageSize → 768]

dPm

dΩ
 = 

(250)
The integral can be separated into components

(251)

where

T1 = 

T2 = 
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We get cylindrical Bessel functions. Recall,
  Jm(z) = (-i)m ∫ 0

2 π dϕ e i m (ϕ–z cosϕ);
  ∫ 0

2 π dϕ e i m (ϕ–z cosϕ) = (-i)m Jm(z)

Let z ≡ m (ω0R/c) sinθ = m β sinθ,
where β = ω0R /c .
⇒ First term:
T1 = (2 π /ω0) ∫0

2 π dϕ cosϕ e i (mϕ – z cosϕ )

  = (-i)m (π /ω0) [ Jm+1(z) – Jm–1(z) ]
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⇒ Second term:
T2 = (-i)m (π /ω0) [ Jm+1(z) + Jm–1(z) ]
.

So,  ṽm = 
= ∫ 0

2 π dt v(t) eim ω0t–n
⋀
.r(t)c

= v0 (-i)m (π /ω0)
   ▫{ e

⋀
x [Jm+1 + Jm–1] – i e

⋀
y [Jm+1– Jm–1] }
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⇒ A bunch of substitutions ...
■ Calculate n

⋀
 × ṽ m

■ Calculate n
⋀
 × ṽ m 2

■ Apply a Bessel function recurrence relation,
Jm+1(z) + Jm–1(z) = (2m/z) Jm(z)
■ Use another recurrence relation,
Jm+1(z) – Jm–1(z) = –2 Jm’(z) 

′ = derivative w.r.t. z
Putting it all together ⟹
dPm

dΩ
 = 

(267)
This is the differential power

radiated into the m-th harmonic.
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3-

◼ The total power radiated into the m-
th harmonic, during one period.

Define Pm = ∫  dΩ dPm

dΩ

According to WR the integral is too difficult, so 
they do the calculation in a different way.
Go back to Eq. (250)
dPm

dΩ
 = n

⋀
 × I


 2 

We have n
⋀
 × I


 2 = I2 – (n

⋀
• I

)2

where
I


 = ∫0
T dt v(t) e i mω0t–n

⋀
• r(t)c.
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After some clever analysis,
Pm = e

2

R
 ∫ dϕ cos(mϕ) β2cosϕ – 1)

     ▫ sin(2 mβ sin(ϕ/2))
sin(ϕ/2)

Now it turns out...
∫0

x dz J2 m(z) = 1
π ∫ 0

π dϕ cos(mϕ) sin(x sin(ϕ/2))
sin(ϕ/2)

So
Pm = e

2 mω0

R
 { 2 β2J2 m

′ (2mβ)
    – 1–β2) ∫ 0

2 mβ dz J2 m(z) }
(287)
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◼ The total radiated power

Can we calculate ?
m=1

∞  Pm ?

According to WT we can't calculate that.
But we can calculate something different.

In[85]:= scanR92
Out[85]= Show[$Failed, ImageSize → 768]
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