mati) dir0 = "/Users/OurMacBookAir/Documents"; dir1 =
"/ Teaching.2018.current/chapter11.current /RadLecs.999";
SetDirectory[StringJoin[dir0, dirl]]; FileNames[];
sc1 = Show[Import["fig11.9.png", "png"],
ImageSize \rightarrow 768];
sc2 = Show [Import ["eq11.166.png", "png"],
ImageSize \rightarrow 768];
sc3 = Show [Import["fig11.10.png", "png"],
ImageSize \rightarrow 768];
sc4 = Show [Import["eq11.169.png", "png"],
ImageSize \rightarrow 768];

Wednesday October 24
Chapter 13: Relativistic Electrodynamics
Section 13.7: Relativistic kinematics in the context of linear and circular particle accelerators
1.
$1 \Rightarrow$ The power radiated by an accelerating particle Larmor's formula (see Section 11.6) In the "instantaneous rest frame" of the particle, the radiated power is

$$
\mathrm{P}(\mathrm{t})=\frac{2 e^{2}}{3 \mathrm{c}^{3}}\left[\vec{a}\left(t_{0}\right)\right]^{2}
$$

(13.99)

$$
t_{0}=t-r / c
$$

The Liénard result (see Section 11.6) In an arbitrary reference frame,

$$
P_{L}\left(t_{r}\right)=\frac{2 e^{2}}{3 c^{3}}\left[\frac{\vec{v} \mathbf{0}^{2}-(\vec{\beta} \times \vec{v})^{2}}{\left(1-\beta^{2}\right)^{3}}\right]_{\mathrm{ret}}
$$

(11.160)

$$
t_{r}=t-|x-r|^{2}
$$

WT point out that the derivation of

(11.160) — based on the LiénardWiechert potentials - "took several pages to derive."

Using Special Relativity we can derive (11.160) trivially, based on the following theorem. [See Exercise 13.7.1.]
Theorem. $P\left(t_{r}\right)$ is a scalar with respect to Lorentz transformations.
Proof. It can be shown that

$$
P_{L}\left(t_{r}\right)=\frac{2 e^{2}}{3 m^{2} c^{3}}\left(-\frac{\mathrm{dp}^{\mu}}{\mathrm{d} \tau} \frac{\mathrm{dp}_{\mu}}{\mathrm{d} \tau}\right)
$$

(13.100)
which is manifestly a scalar.
Or, it makes sense because $P=d E / d t$ and both E and t are time components of 4 -vectors (x^{μ} and p^{μ}).

2.

$2 \Rightarrow$ Radiation when $\vec{a} \| \vec{v}$ and when $\vec{a} \perp$ \vec{v}

Electromagnetic waves carry energy and momentum. Therefore there is energy loss via radiation when a particle undergoes acceleration. We know formulas for the energy loss, from Section 11.6.

Fig. 11.9 Radiation patterns when $\vec{v} \| \mid \vec{v}$, for three different values intervals below each pattern indicate the relative scales for distributions shown.

Out[44]=

$$
P\left(t_{r}\right)=\frac{2}{3} \frac{e^{2}}{c^{3}} \frac{\dot{v}^{2}}{\left(1-\beta^{2}\right)^{3}}=\frac{2}{3} \frac{e^{2}}{c^{3}} \gamma^{6}
$$

$\beta=0$

$\beta=0.2$

$\beta=0.9$

Fig. 11.10 Radiation patterns when $\dot{\vec{v}} \perp \vec{v}$, for three different vi The intervals below each pattern indicate the relative scales for distributions shown.

애(t)이 $P\left(t_{r}\right)=\frac{2 e^{2}}{3 c^{3}} \frac{\dot{v}^{2}}{\left(1-\beta^{2}\right)^{3}}\left(1-\beta^{2}\right)=\frac{2 e^{2}}{3 c^{3}} \frac{\dot{v}^{2}}{\left(1-\beta^{2}\right)^{2}}=\frac{2}{3} \frac{e^{2}}{c^{3}} \dot{v}^{2} \gamma^{4}$.
These results are the radiative losses for given parallel and perpendicular accelerations.

But what is more relevant is calculate the the radiative losses for parallel and perpendicular forces.

3.

Linear accelerators : $\vec{a} \mid / \vec{v}$

From Chapter 11,
$P_{\text {lin }}=\frac{2 e^{2}}{3 c} \gamma^{6}\left(\bar{\beta}^{\beta}\right)^{2} \propto \gamma^{6}$ for given acceleration
But now re-express $P_{\text {lin }}$ in terms of $d \vec{p} / d t$. Relativistic dynamics of a particle (mass m) $\mathrm{E}=\gamma \mathrm{mc}^{2}$ and $\vec{p}=\gamma \mathrm{m} \vec{v}$ where $\gamma=$ $1 / \sqrt{1-\beta^{2}}$ and $\beta=v / c$.

$$
\begin{aligned}
& \beta^{2}=1-\gamma^{-2}=1-\left(\frac{m c^{2}}{E}\right)^{2} \\
& 2 \beta \dot{\beta}=2 m^{2} c^{4} E^{-3} \dot{E}
\end{aligned}
$$

$$
\left(\begin{array}{l}
\dot{\beta})^{2}=\left(\frac{m^{2} c^{4} \dot{E}}{\beta E^{3}}\right)^{2}=\frac{\dot{E}^{2}}{\beta^{2}} \frac{\left(\mathrm{mc}^{2}\right)^{4}}{\left(\gamma \mathrm{mc}^{2}\right)^{6}} .
\end{array}\right.
$$

$$
\therefore \gamma^{6}(\bar{\beta})^{2}=\frac{\dot{E}^{2}}{\beta^{2}\left(\mathrm{mc}^{2}\right)^{2}}
$$

$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
2E $\bar{E}=2 \mathrm{p} \dot{p} \mathrm{c}^{2}$
$\bar{E}=\dot{p} \frac{\mathrm{pc}^{2}}{E}=\dot{p} \frac{\gamma \mathrm{mvc}^{2}}{\gamma \mathrm{mc}^{2}}=\dot{p} \mathrm{v}$
$\therefore \gamma^{6}(\dot{\beta})^{2}=\frac{\dot{p}^{2} v^{2}}{(v / c)^{2}\left(\mathrm{mc}^{2}\right)^{2}}=\left(\frac{\dot{p}}{\mathrm{mc}}\right)^{2}$
$P_{\text {lin }}=\frac{2 e^{2}}{3 c} v^{6}(\stackrel{\ddot{\beta}}{\beta})^{2}=\frac{2 e^{2}}{3 m^{2} c^{3}}\left(\frac{d \vec{p}}{d t}\right)^{2}$
(13.102)

In terms of $d \vec{p} / \mathrm{dt}(\equiv$ the force $), P_{\text {lin }} \propto \gamma^{0}$.
4.

Circular accelerators : $\overrightarrow{\mathbf{a}} \perp \vec{v}$

From Chapter 11,
$P_{\text {circ }}=\frac{2 e^{2}}{3 c} \gamma^{4}(\stackrel{\ddot{\beta}}{\boldsymbol{\beta}})^{2} \propto \gamma^{4}$ for given acceleration

But now re-express $P_{\text {circ }}$ in terms of $d \vec{p} / \mathrm{dt}$.
"
For circular motion,
$|\vec{v}|$ is constant, $v=R \omega_{c}$;
also, $d \vec{v} / d t$ is perpendicular to \vec{v}.
$\vec{p}=\gamma m \vec{v} \quad \Longrightarrow \quad \frac{d \vec{p}}{\mathrm{dt}}=\gamma \mathrm{m} \frac{d \vec{v}}{\mathrm{dt}}$
$(\vec{\beta})^{2}=\left(\frac{1}{c} \frac{d \vec{v}}{d t}\right) \cdot\left(\frac{1}{c} \frac{d \vec{v}}{d t}\right)=\frac{(\vec{p})^{2}}{(\gamma \mathrm{mc})^{2}}$
$P_{\text {circ }}=\frac{2 e^{2}}{3 c} \gamma^{4}(\stackrel{\bullet}{\beta})^{2}=\frac{2 e^{2}}{3 m^{2} c^{3}} \gamma^{2}\left(\frac{d \vec{p}}{d t}\right)^{2}$
(13.104)

In terms of $d \vec{p} / \mathrm{dt}$ (\equiv the force), $P_{\text {circ }} \propto \gamma^{2}$. "Under the same force, the radiative losses from circular acceleration are a factor of r^{2} times larger than those from linear acceleration."

5.

$3 \Rightarrow$ Example of a linear accelerator; e.g., SLAC

A charged particle moves in a constant electric field. Then $|d \vec{p} / \mathrm{dt}|$ is constant. [See Exercise 13.7.3.] Let T be the time of flight. Then the total radiated energy is
$E_{\text {rad }}=\frac{2 e^{2}}{3 m^{2} c^{3}}\left(\frac{\mathrm{dp}}{\mathrm{dt}}\right)^{2} \mathrm{~T}$
$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
Interesting exercise: $\frac{d E}{d x}=\frac{d p}{d t}$
$E_{\text {rad }}=\frac{2 e^{2}}{3 m^{2} c^{3}}\left(\frac{\mathrm{dE}}{\mathrm{dx}}\right)^{2} T$
We may say $T \approx L / c$ for a
linear accelerator with length L, so the energy supplied is
$E_{\text {supplied }}=\frac{\mathrm{dE}}{\mathrm{dx}} L \approx \frac{\mathrm{dE}}{\mathrm{dx}} T_{C}$
Thus,
$\frac{E_{\text {rad }}}{E_{\text {supplied }}}=\frac{2 e^{2}}{3 m^{2} c^{4}}\left(\frac{\mathrm{dE}}{\mathrm{dx}}\right)$
WT give these parameters:
$\mathrm{dE} / \mathrm{dx}=10 \mathrm{MeV} / \mathrm{m}$
electron: $E_{\text {rad }} / E_{\text {supplied }} \sim 10^{-14}$
proton: $E_{\text {rad }} / E_{\text {supplied }} \sim 10^{-20}$
In a linear accelerator, radiation is not a significant source of energy loss.
6.
$4 \Rightarrow$ Example of a circulator accelerator; egg., LHC
From Section 11.9, Eq. (11.171), the energy supplied for a single cycle is
$(\Delta \mathrm{E})_{\text {cycle }}=\frac{4 \pi e^{2}}{3 R} \frac{\beta^{3}}{\left(1-\beta^{2}\right)^{2}}$

$$
=\frac{4 \pi e^{2}}{3 R}\left(\frac{E}{\mathrm{mc}^{2}}\right)^{4} \beta^{3}
$$

Take the LHC as an example. Parametars:
$\mathrm{R}=4.3 \mathrm{~km}=4.3 \times 10^{5} \mathrm{~cm} ;$
proton energy $=\mathrm{E}=7 \mathrm{TeV}(=$ design energy)
\therefore
$(\Delta \mathrm{E})_{\text {cycle }}=4.5 \mathrm{keV}=4.5 \times 10^{3} \mathrm{eV}$ energy radiated per proton per revolution

For comparison, what?
The number of revolutions that would produce radiation of 7 TeV :
$\# \mathrm{r}=7 \mathrm{TeV} /(\Delta \mathrm{E})_{\text {cycle }}=1.5 \times 10^{9}$
(assuming the particle energy is maintained constant)
period of revolution $=2 \pi \mathrm{R} / \mathrm{c}=10^{-4}$ sec;
time for \#r revolutions $=1.5 \times 10^{5} \mathrm{sec}=$ 1.7 days.

Evidently, radiation losses are not a limiting factor at the LHC.
Magnetic field requirement -For a nonrelativistic proton, $m R \omega^{2}=(\mathrm{e} / \mathrm{c}) \mathrm{R} \omega \mathrm{B}$ and $\mathrm{p}=\mathrm{mv}=\mathrm{mR} \omega$;
$\Rightarrow R=\frac{p}{\mathrm{~m} \omega}=\frac{p}{m(\mathrm{eB} / \mathrm{mc})}=\frac{\mathrm{pc}}{\mathrm{eB}}$
-For an ultrarelativistic proton, the same relation is true [Exercise 13.7.4];
also, $\mathrm{E}=\mathrm{pc}$; so
$\Rightarrow \mathrm{B}=\frac{E}{\mathrm{eR}}$.
-For the LHC, $\mathrm{E}=7 \mathrm{TeV}$
$\Longrightarrow B=5.4 \times 10^{4}$ Gauss $=5.4$ Tesla.
(Actually $\mathrm{B}>5.4$ Tesla because the tunnel is not totally filled with bending magnets.)

An electron synchrotron is different! Exercise 13.7.5
7.

Homework Assignment \#11 (due Nov 2) will include
Exercise 13.7.1
Exercise 13.7.2
Exercise 13.7.3
Exercise 13.7.4
Exercise 13.7.5

