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Wednesday October 24

Chapter 13: Relativistic Electrodynamics

Section 13.7: Relativistic  kinematics in the 
context of linear and circular particle 
accelerators
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1.

1⟹ The power radiated by an 
accelerating particle

Larmor’s formula (see Section 11.6)
In the "instantaneous rest frame" of the 
particle, the radiated power is

P(t) = 2 e2

3 c3   a(t0)
2

(13.99)
t0 = t - r/c

The Liénard result (see Section 11.6)
In an arbitrary reference frame,

PL(tr) =
2 e2

3 c3   
v

⟶◼2
–  β


× v

⟶◼

2

1 – β23

ret

(11.160)
tr = t– x - r 2

WT point out that the derivation of 
(11.160) — based on the Liénard-
Wiechert potentials — “took several 
pages to derive.”
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Using Special Relativity we can derive 
(11.160) trivially, based on the following 
theorem. [See Exercise 13.7.1.]
Theorem. P(tr) is a scalar with respect to 
Lorentz transformations.
Proof. It can be shown that

   PL(tr)  =  2 e2

3 m2 c3 ( – 
dpμ

dτ
 
dpμ

dτ
 )

(13.100)
which is manifestly a scalar.
Or, it makes sense because P = dE/dt 
and both E and t are time components of 
4-vectors ( xμ and pμ ).
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2.

2 ⟹ Radiation when a 1 v and when a ⊥ 
v

Electromagnetic waves carry energy and 
momentum. Therefore there is energy 
loss via radiation when a particle under-
goes acceleration. We know formulas for 
the energy loss, from Section 11.6.

In[43]:= sc1
sc2
sc3
sc4
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Out[43]=

Out[44]=
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Out[45]=

Out[46]=

These results are the radiative losses for 
given parallel and perpendicular 
accelerations.
But what is more relevant is calculate 
the the radiative losses for parallel and 
perpendicular forces.
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3.

Linear accelerators  :   a

 $  v

From Chapter 11,

Plin = 2 e2

3 c
 γ6 β

◼ 2
   ∝  γ 6 for given 

acceleration

But now re-express Plin in terms of  dp/dt.
Relativistic dynamics of a particle (mass 
m) E = γ mc2 and p = γ mv where γ = 

1/ 1–β2  and β = v/c.
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◼◼

β2 = 1 – γ–2= 1 – mc2

E

2

2β β
◼
 = 2 m2 c4 E–3 E

◼

β
◼ 2

 = m2 c4 E
◼

β E3

2

= E
• 2

β2  mc24

γmc26

∴ γ6 β
◼ 2

 = E
▪2

β 2 mc22
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◼◼

E2 = p2 c2 + m2 c4

2E E
◼
 = 2p p

◼
 c2

E
◼
 = p

◼
 
pc2

E
 = p

◼  γmv c2

γmc2  = p
◼
 v

∴ γ6 β
◼ 2

 = 
p
▪2

v2

(v/c) 2 mc22
 = 

p
◼

mc

2

Plin =
2 e2

3 c
γ6 β

◼ 2
=

2 e2

3 m2 c3

d p

dt

2

(13.102)

In terms of d p/dt ( ≡ the force), Plin ∝ γ0.
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4.

Circular accelerators  :  a

  ⊥   v

From Chapter 11,

Pcirc = 2 e2

3 c
 γ4 β

◼ 2
   ∝  γ 4 for given 

acceleration

But now re-express Pcirc in terms of  
dp/dt.
◼◼
For circular motion, 

v  is constant, v = Rωc ;
also, d v dt is perpendicular to v.

p = γ m v    ⟹    
d p

dt
 = γ m d v

dt

β
◼ 2

 = ( 1
c
 d v

dt
) •  ( 1

c
 d v

dt
) = p

◼

2

(γ mc)2
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Pcirc = 2 e2

3 c
γ4 β

◼ 2
= 2 e2

3 m2 c3 γ2 d p

dt

2

(13.104)

In terms of d p/dt ( ≡ the force), Pcirc ∝ γ2.
“Under the same force, the radiative 
losses from circular acceleration are a fac-
tor of γ 2 times larger than those from lin-
ear acceleration.”
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5.

3 ⟹  Example of a linear accelerator; 
e.g., SLAC

A charged particle moves in a constant 
electric field. Then |d p/dt| is constant. 
[See Exercise 13.7.3.] Let T be the time 
of flight. Then the total radiated energy is

Erad = 2 e2

3 m2 c3  
dp
dt

2
 T

E2 = p2 c2 + m2 c4

Interesting exercise: dE
dx

 = 
dp
dt

Erad =
2 e2

3 m2 c3

dE

dx

2

T

We may say T ≈ L / c for a

linear accelerator with length L,

so the energy supplied is
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Esupplied =
dE

dx
L ≈

dE

dx
T c

Thus,
Erad

Esupplied
=  2 e2

3 m2 c4  dE
dx

WT give these parameters:

dE/dx = 10 MeV /m

electron: Erad  Esupplied ~ 10 -14

proton: Erad  Esupplied ~ 10 –20

In a linear accelerator, radiation is not a 
significant source of energy loss.
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6.

4 ⟹  Example of a circulator accelerator; 
e.g., LHC

From Section 11.9, Eq. (11.171), the 
energy supplied for a single cycle is

(ΔE)cycle = 4 π e2

3 R
 β3

1–β22
 

   = 4 π e2

3 R
  E

mc2 
4
 β3

Take the LHC as an example. Parame-
ters:
R = 4.3 km = 4.3×105 cm;
proton energy = E = 7 TeV ( = design 
energy)
∴
(ΔE)cycle = 4.5 keV = 4.5×103 eV 

energy radiated per proton per 
revolution

For comparison, what?
The number of revolutions that would 
produce radiation of 7 TeV:
#r = 7 TeV / (ΔE)cycle = 1.5 × 109

(assuming the particle energy is main-
tained constant)
period of revolution =  2π R /c = 10–4 
sec;
time for #r revolutions = 1.5 × 105 sec = 
1.7 days.
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For comparison, what?
The number of revolutions that would 
produce radiation of 7 TeV:
#r = 7 TeV / (ΔE)cycle = 1.5 × 109

(assuming the particle energy is main-
tained constant)
period of revolution =  2π R /c = 10–4 
sec;
time for #r revolutions = 1.5 × 105 sec = 
1.7 days.
Evidently, radiation losses are not a limit-
ing factor at the LHC.
Magnetic field requirement
●For a nonrelativistic proton,
mRω2 = (e/c) Rω B  and  p = mv = mRω;

⟹ R = 
p

mω
 = p

m(eB/mc)
 = pc

eB
●For an ultrarelativistic proton, the same 
relation is true [Exercise 13.7.4];
also, E = pc; so

⟹  B = E
eR

 .
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●For an ultrarelativistic proton, the same 
relation is true [Exercise 13.7.4];
also, E = pc; so

⟹  B = E
eR

 .

●For the LHC, E = 7 TeV
⟹  B = 5.4 × 104 Gauss = 5.4 Tesla.
(Actually B > 5.4 Tesla because the tun-
nel is not totally filled with bending 
magnets.)

An electron synchrotron is different!
Exercise 13.7.5
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7.
Homework Assignment #11 (due Nov 2) 
will include
Exercise 13.7.1
Exercise 13.7.2
Exercise 13.7.3
Exercise 13.7.4
Exercise 13.7.5
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