wn- d1r@ = "/Users/OurMacBookAir/Documents”;

dirl =

"/ Teaching.2018.current/chapterll.current
/RadlLecs.999";

SetDirectory[StringJoin[dir®, dirl]];

FileNames|];

scl = Show[Import|["figll.9.png", "png'"],
ImageSize —» 768] ;

sc2 = Show[Import["eqll.166.png", "png'],
ImageSize - 768] ;

sc3 = Show|[Import|["figll.10.png", "png"],
ImageSize - 768] ;

sc4 = Show [ Import|["eqll.169.png", "png"],
ImageSize —» 768] ;
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Wednesday October 24
Chapter 13: Relativistic Electrodynamics

Section 13.7: Relativistic kinematics in the
context of linear and circular particle
accelerators
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1.

1=> The power radiated by an
accelerating particle
Larmor’s formula (see Section 11.6)

In the "instantaneous rest frame" of the
particle, the radiated power is

2
P = 5 [3o)]
(13.99)
to=1t-r/c
The Liénard result (see Section 11.6)

In an arbitrary reference frame,

—n? -> —n
V B (

2
2 e’ [ " V) ]
Pt) = 25
(&) 3¢’ (1-8%) ret
(11.160)
tr=t-|x-r|*

WT point out that the derivation of
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(11.160) — based on the Liénard-
Wiechert potentials — “took several
pages to derive.”
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Using Special Relativity we can derive
(11.160) trivially, based on the following
theorem. [See Exercise 13.7.1.]

Theorem. P(t,) is a scalar with respect to
Lorentz transformations.

Proof. It can be shown that

. 2¢€ dp* dp,
PL(tl’) — 3 <_ dT dT )

3m?c
(13.100)

which is manifestly a scalar.

Or, it makes sense because P = dE/dt
and both E and t are time components of
4-vectors (x* and p* ).
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2.

2 = Radiation when 2 || Vv and when 2 1

-
vV

Electromagnetic waves carry energy and
momentum. Therefore there is energy
loss via radiation when a particle under-
goes acceleration. We know formulas for
the energy loss, from Section 11.6.
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v, v

Out[43]=
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Fig. 11.9 Radiation patterns when g)|#, for three different values
intervals below each pattern indicate the relative scales for-
distributions shown.

“ P(ty) = e A
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&
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Fig. 11.10 Radiation patterns when # | g, for three different v
The intervals below each pattern indicate the relative scales fo
distributions shown.
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Out[46]= P{f.} 3
These results are the radiative losses for
given parallel and perpendicular
accelerations.
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But what is more relevant is calculate
the the radiative losses for parallel and
perpendicular forces.
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3.

. > >
Linear accelerators : a [l v

From Chapter 11,

2 W
Plin = 23_eC ° (,8) « y° for given
acceleration

But now re-express P, in terms of dﬁ/dt.
Relativistic dynamics of a particle (mass
2 - -

m) E=ymc”and p = y mv where y =

1/4/ 1-8%> and B = v/c.



21\2
2 _ 1 _ 21 _ (MCcC
gr=1-y?=1- ()

2BB=2m?>c*EE

2 (24 E 2_ /:52 (mc?)*
('8) - ﬁE3 B :82 (ymc2)6

-5



2QEE=2ppc?
m 2 2

= pC = ymv C .
E:p?:p S~ =pV

m\ D [.)2 V2 ;) 2
6 _ _ | L
Y ('B) ~ (vid)? (mc?) (mc)

2 e’ 6(5)2 2 e? (d?)]z

2C3

) 3m
(13.102)
In terms of dﬁ/dt ( = the force), P}, « y°.
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: > -
Circular accelerators : a L v

From Chapter 11,

2 =2
P = 23_eC 4 (,B) « y* for given

acceleration

But now re-express P, in terms of
dp/dt.
] |

For circular motion,

| % | is constant, v = Rw ;
also, d v /dt is perpendicular to V.
dp d
iy

- - B

<J <

> -
p=ymv = m
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2
2 e? "\2 2 e? dp
Pcirc = 3c V4 (:B) 3 VZ(E)

" 3m2c
(13.104)

In terms of dﬁ/dt ( = the force), Pgire « y°.

“Under the same force, the radiative
losses from circular acceleration are a fac-
tor of y* times larger than those from lin-
ear acceleration.”
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5.
3 = Example of a linear accelerator;
e.g., SLAC

A charged particle moves in a constant

electric field. Then |d p/dt| is constant.
[See Exercise 13.7.3.] Let T be the time

of flight. Then the total radiated energy is
_2e d_P)2
Frad = 3m?cd \ dt !
P =p+m’c
- o dE _ 9D
Interesting exercise: I = dr
o 2e*  (dEY? .
SREPRCIE (dx)

We maysay T = L/c fora
linear accelerator with length L,
so the energy supplied is
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dE dE

Esupplied = d_X [ = d_X I'c
Thus,

frad _ _2¢€° ( dE )
Esupplied 3 m?*c* dx

WT give these parameters:
dE/dx = 10 MeV /m
electron: Equq / Esupplied ~ 107

proton: Eqad [ Esupplied ~ 10727

In a linear accelerator, radiation is not a
significant source of energy loss.



18 | R10.0ct23.nb

6.

4 = Example of a circulator accelerator;
e.g., LHC
From Section 11.9, Eq. (11.171), the
energy supplied for a single cycle is

ane’ _PB
(AE)cycle: 3

3R (1-p7)
_4me’ ( E )4 5
3R \mc?

Take the LHC as an example. Parame-
ters:

R=43km=4.3%x10>cm;

proton energy = E =7 TeV ( = design
energy)

(AE)cycle = 4.5 keV = 4.5x10° eV

energy radiated per proton per
revolution
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For comparison, what?

The number of revolutions that would
produce radiation of 7 TeV:
#r="7TeV/(DE)cyce = 1.5 x 10

(assuming the particle energy is main-
tained constant)

period of revolution = 2R /c =107
sec;

time for #r revolutions = 1.5 x 10° sec =
1.7 days.

Evidently, radiation losses are not a limit-
ing factor at the LHC.

Magnetic field requirement
eFor a nonrelativistic proton,

mRw? = (e/c) Rw B and p = mv = mRw;
p p _ pc

= R = mw _ m(eB/mc) ~ eB

eFor an ultrarelativistic proton, the same
relation is true [Exercise 13.7.4];
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also, E = pc; so

-
=>B—eR.

efFor the LHC, E=7 TeV
— B =5.4 x 10" Gauss = 5.4 Tesla.
(Actually B > 5.4 Tesla because the tun-
nel is not totally filled with bending
magnets.)
An electron synchrotron is different!
Exercise 13.7.5
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/.

Homework Assignment #11 (due Nov 2)
will include

Exercise 13.7.1

Exercise 13.7.2

Exercise 13.7.3

Exercise 13.7.4

Exercise 13.7.5



