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The classical electron model of light scattering

● An electromagnetic wave impinges upon a 
molecule

The electrons experience electric and magnetic 
forces.
The  electric force is much stronger than the mag-
netic force, because atomic electrons are nonrela-
tivistic ( v ≪ c ).
We’ll assume that the incoming E.M. wave is a 
plane wave, moving in the z direction, and linearly 
polarized in the x direction;

  E

( x,t) = e

⋀
x E0  e i ( k z – ω t)

Re implied!
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● Motion of the electron(s)

Using the classical electron model, the motion of 
an electron is described by

  m d 2 r

dt2  = – K r – γ  d r

dt
 – e E0 e

⋀
x e–i ω t

We can treat the electric field
as uniform in space because the 

wavelength is ≫ the size of the atom.
(Really this model equation represents the motion 
of the negative charge in the atom, which may 
involve many electrons. But I’ll continue to call it 
“the electron”.)
The equation: a damped driven oscillator.

4     Scat0.nb



The steady state solution: the electron oscillates 
in the x direction, with the driving frequency ω;

  r(t) = e
⋀

x e –iω t A
where 

  A = 
– e E0

mω0
2 – ω2 – iℽ ω

  ω0 = K /m  = the “natural frequency”.
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● The electron radiates

Larmor’s formula; the average power integrated 
over all directions is

Pavg = 2 e2 a2

3 c3  where a2 =   x
◼◼

2
 .

We need to be careful about taking the real part 
of x(t).

In[788]:= .

We have A = A1 + i A2, and so
x(t) = Re { e–iωt A } = A1 cos(ω t) + A2 sin(ω t)

In[788]:= .

  x
•• 2

 .= 1
2
 ω4 ( A1

2 + A2
2 )

Pavg  =  e2

3 c3  ω4 ( A1
2 + A2

2 )
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In[788]:= (* Calculations *)

A = -e * E0 / (m (ω0^2 - ω^2) - I * γ * ω)

{A1, A2} =

{Re[A], Im[A]} // ComplexExpand // Simplify

A1^2 + A2^2 // Expand // Simplify

Pavg = e^2 * ω^4 / (3 * c^3) * (%)

Out[788]= -
e E0

-ⅈ γ ω + m -ω2 + ω02

Out[789]= 
e E0 m ω2 - ω02

γ2 ω2 + m2 ω2 - ω022
, -

e E0 γ ω

γ2 ω2 + m2 ω2 - ω022


Out[790]=
e2 E02

γ2 ω2 + m2 ω2 - ω022

Out[791]=
e4 E02 ω4

3 c3 γ2 ω2 + m2 ω2 - ω022
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● Scattering and the cross section
In[792]:= fig1513
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The definition of the scattering cross section is

  σ = P
Sinc

where P = outgoing power averaged over time;

and Sinc = incoming intensity ≡ power per unit 

area averaged over time
Of course we know Sinc

Sinc = c
4π

 〈 E

 × B


 〉 = c

8π
 E0

2

Thus,

σ = 
e4 E0

2 ω4

3 c3  1
m2ω0

2– ω22+γ2 ω2
 8π
c E0

2
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σ = 8π
3

re
2 ω4

ω0
2– ω22+ (γω/m)2

re = e2

mc2  = the “classical radius” of the electron
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● Three regions of frequency

■■ For ω ≪ ω0

◼ σ ∝ ω4

■ Rayleigh scattering
■ Why the sky is blue and sunsets are red

■■ For ω ~ ω0

◼ resonant scattering
■ The frequency of ligh is near the natural fre-
quency ⟹ a large peak in the cross section.
■ Resonance fluorescence in atomic physics 
(quantum theory)

■■ For ω ≫ ω0

◼ σ = 8π re
2 /3 , a constant = 66.5 fm2 =  665 mil-

libarn
■ Thomson scattering
■ This is the scattering of light from a free elec-
tron (ω0 = γ = 0) for ℏω ≫ 1 eV.
◼ Applications in plasma physics
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● A fourth region of frequency

■■ For ℏω ≳ mc2 = 0.5 MeV = hard X-rays
■ ⟹ Compton scattering
■ The frequency of the scattered waves is not ω. 
■ ω’ < ω in the target electron rest frame
■ ω’ depends on θ
■ Compton’s experiments (early 1920’s) — the 
definitive proof of the photon theory of light.
■ γ + e ⟶ γ ’ + e ’
■ QED is necessary to calculate the cross sec-
tion; the Klein-Nishina formula.
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