Mon Oct 29
Chapter 12: Scattering and Diffraction

Last time: Light scattering from an
electron

*Rayleigh scattering ( y + bound e)
"Resonant scattering
* Thomson scattering ( y + free e)

Today: Section 12.1: The polarized
scattering cross section

Consider harmonic waves incident on a
charge density:;

En(R)=ER@) e @
and By(R1)= B(R) e '@"
Field equations
- - = =
E and B mean E (x) and B (x);
- -
J means J ( x).
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Vx B =-ik E +(4rt/c) J where k = w/c
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Combine the field equations, Incident plane waves have

Vv x (Vx ?) = K2 E +ik 4Tn‘7 E;nc,( %) = E eg e %0'% Where o * /;)o = 0.
and /; o = wave vector
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So,
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R Wave equation with a source;
a linear inhomogeneous eq.




The Green's function for this problem

To solve the wave equation, recall the
retarded Green's function 6(xX t; X' ') :

2_ 1 8%
(v c? 67‘2)6

=483 (X-X")S(t-1);
G- % S(t-+'-R/c) whereR=| X- X'
Fourier transform w.r.t. time,

(V2 _ kZ) Goutgoing — _A4 ¢ 63( )_() _ )_() ¥
k = w/c
where 6°4'( X, X' :k) = F.T. of 6 w.r.t. time.
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Note: 6 °“" is an outgoing wave
from a point source
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G (X, X' K) = where R= | x- x|

= The solution of the wave equation
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integrate by parts
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dyadic

The far zone approximation

- AN,
| Xx-x'|=r-ne-x
A
where 1 is the direction of X; this gives
the outgoing scattered wave
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So the E field of the scattered wave is




The scattered power

The asymp‘ro’ruc fields,
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So the f/'me-averaged scattered power is
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Polarizations of the scattered waves

We can separate the outgoing waves into lin-
ear or circular polarizations.

(We did not do this back in Chapter 11 for
radiation fields, but we could have. In fact
the same method applies to either scatter-
ing or radiation. For example, synchrotron
radiation is generally polarized—which can
be used in radio astronomy. )
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We have E4.» n = 0. For linear polarization,

define two or‘Thogonal directions both per-
pendlcular' to h; denoTe ’rhe unit vectors by
61 and 62 with 61 X e?_ = n Then
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The power distribution is - = = ; (dQ)f
where
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Define the scattering amplitude f (k, ko)

lkr'
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Write E . =

<Ko

E f(k Ko).
/70 = incident wave vector ;

/? =k n s k=w/c.

Then
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The polarized scattering cross section

Suppose the incident wave has a definite
polarization 2,-.

The scattered wave will have both outgoing
polarizations, but let's assume that what is

observed is the polarization éf. The cross
section for this process is (do/dQ),; .

(element of a 2 x 2 matrix)
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(5 )unpol = average and sum
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Next we need to calculate the current den-
sity 3') ()_()).

Remember, the current density is created
by the incident wave.

Also, what kind of object is scattering
the light?




