	21 satuth
Mon Oct 29 Chapter 12: Scattering and Diffraction	Today: Section 12.1: The polarized scattering cross section
Last time: Light scattering from an electron	Consider harmonic waves incident on a charge density;
- Rayleigh scattering ($\gamma+$ bound e) - Resonant scattering - Thomson scattering ($\gamma+$ free e)	$\begin{aligned} & \vec{E}_{\text {in }}(\vec{x}, t)=\vec{E}(\vec{x}) e^{-i \omega t} \\ & \text { and } \vec{B}_{\text {in }}(\vec{x}, t)=\vec{B}(\vec{x}) e^{-i \omega t} \end{aligned}$ Field equations
	$\begin{aligned} & \vec{E} \text { and } \vec{B} \text { mean } \vec{E}(\vec{x}) \text { and } \vec{B}(\vec{x}) ; \\ & \vec{J} \text { means } \vec{J}(\vec{x}) . \\ & \nabla \times \vec{B}=-\mathrm{ik} \vec{E}+(4 \pi / c) \vec{J} \text { where } \mathrm{k}=\omega / \mathrm{c} \\ & \nabla \times \vec{E}=\mathrm{ik} \vec{B} \end{aligned}$

Combine the field equations,
$\nabla \times(\nabla \times \vec{E})=k^{2} \vec{E}+i k \frac{4 \pi}{c} \vec{J}$
and
ik $\nabla \cdot \vec{E}=\frac{4 \pi}{c} \nabla \cdot \vec{J}$
So,
$-\left(\nabla^{2}+k^{2}\right) \vec{E}=$
$=\mathrm{ik} \frac{4 \pi}{c}\left\{\vec{J}+\frac{1}{k^{2}} \nabla(\nabla \cdot \vec{J})\right\}$
κ Wave equation with a source; a linear inhomogeneous eq.

4 | Scat1.nb

Incident plane waves have

$\vec{E}_{\text {inc. }}(\vec{x})=E_{0} \hat{e}_{0} e^{i \vec{k}_{0} \cdot \vec{x}}$ where $\hat{e}_{0} \cdot \vec{k}_{0}=0$. $\vec{k}_{0}=$ wave vector
$\hat{e}_{0}=$ polarization vector (ϵ transverse plane)

$G^{\text {out }}\left(\vec{x}, \vec{x}^{\prime} ; k\right)=\frac{e^{i k R}}{R}$ where $R=\left|\vec{x}-\vec{x}^{\prime}\right|$
\Rightarrow The solution of the wave equation

$$
\begin{aligned}
& \vec{E}=\vec{E}_{\text {inc. }}+ \\
& \frac{\text { in }}{c} \int d^{3} x^{\prime} G^{\text {out }}\left(\vec{x}, \vec{x}^{\prime} ; k\right) \\
& \quad \quad\left\{\vec{J}+\frac{1}{k^{2}} \nabla^{\prime}\left(\nabla^{\prime} \cdot \vec{J}\right)\right\}
\end{aligned}
$$

integrate by parts

$$
\begin{aligned}
& =\vec{E}_{\text {inc. }}+i \mathrm{k}\left(1+\frac{1}{k^{2}} \nabla \nabla\right) \cdot \vec{A}(\vec{x}) \\
& \vec{A}(\vec{x})=\frac{1}{c} \int d^{3} x^{\prime} \frac{e^{i \mathrm{k}\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \vec{J}\left(\vec{x}^{\prime}\right)
\end{aligned}
$$

The far zone approximation

$$
\left|\vec{x}-\vec{x}^{\prime}\right| \approx r-\hat{n} \cdot \vec{x}^{\prime}
$$

where \hat{n} is the direction of \vec{x}; this gives the outgoing scattered wave

$$
\vec{A}_{s c}(\vec{x})=\frac{e^{i k r}}{c r} \int d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right) e^{-i k \hat{n} \cdot \vec{x}^{\prime}}
$$

Also, $\nabla \longrightarrow$ in \hat{n}
So the \vec{E} field of the scattered wave is

$$
\begin{gathered}
\vec{E}_{s c}=i k(1-\hat{n} \hat{n}) \cdot \vec{A}_{s c} \\
=-i k \hat{n} \times\left(\hat{n} \times \vec{A}_{s c}\right)
\end{gathered}
$$

Satinb \| 9	10 \| Satt.nb
The scattered power	Polarizations of the scattered waves
The asymptotic fields, $\begin{aligned} & \vec{E}=\vec{E}_{i n c}+\vec{E}_{s c} \\ & \quad \& \vec{E}_{s c}=-i k \hat{n} \times\left(\hat{n} \times \vec{A}_{s c}\right) \\ & \vec{B}=\vec{B}_{i n c}+\vec{B}_{s c} \\ & \& \vec{B}_{s c}=-i k \hat{n} \times \vec{A}_{s c} \end{aligned}$ So the time-averaged scattered power is $\begin{aligned} & \frac{\mathrm{dP}}{\mathrm{~d} \Omega}=\frac{r^{2} c}{8 \pi}\left\|\vec{E}_{s c}\right\|^{2}=\frac{r^{2} c}{8 \pi}\left\|\vec{B}_{s c}\right\|^{2} \\ & =\frac{k^{2} r^{2} c}{8 \pi}\left\|\hat{n} \times \vec{A}_{s c}\right\|^{2} \end{aligned}$	We can separate the outgoing waves into linear or circular polarizations. (We did not do this back in Chapter 11 for radiation fields, but we could have. In fact the same method applies to either scattering or radiation. For example, synchrotron radiation is generally polarized-which can be used in radio astronomy.)

We have $\vec{E}_{s c} \cdot \hat{n}=0$. For linear polarization, define two orthogonal directions both perpendicular to \hat{n}; denote the unit vectors by $\hat{\epsilon}_{1}$ and $\hat{\epsilon}_{2}$, with $\hat{\epsilon}_{1} \times \hat{\epsilon}_{2}=\hat{n}$. Then

$$
\vec{E}_{s c}=\sum_{f=1}^{2} \hat{\epsilon}_{f}\left(\hat{\epsilon}_{f} \cdot \vec{E}_{s c}\right)
$$

The power distribution is $\frac{d P}{d \Omega}=\sum_{f}\left(\frac{d P}{d \Omega}\right)_{f}$ where

$$
\left(\frac{d P}{d \Omega}\right)_{f}=\frac{r^{2} c}{8 \pi}\left|\hat{\epsilon}_{f} \cdot \vec{E}_{s c}\right|^{2}
$$

Define the scattering amplitude $\vec{f}\left(\vec{k}, \vec{k}_{0}\right)$
Write $\vec{E}_{s c}=\frac{e^{i k r}}{r} E_{0} \vec{f}\left(\vec{k}, \vec{k}_{0}\right)$.
$\vec{k}_{0}=$ incident wave vector:
$\vec{k}=\mathrm{k} \hat{n} ; \mathrm{k}=\omega / \mathrm{c}$.
Then

$$
\left(\frac{\mathrm{dP}}{\mathrm{~d} \Omega}\right)_{f}=\frac{c\left|E_{0}\right|^{2}}{8 \pi}\left|\hat{\epsilon}_{f} \cdot \vec{f}\left(\vec{k}, \vec{k}_{0}\right)\right|^{2}
$$

and

$$
\begin{aligned}
& \hat{\epsilon}_{f} \cdot \vec{f}\left(\vec{k}, \vec{k}_{0}\right)= \\
& =\frac{i k}{c \mathrm{E}_{0}} \hat{\epsilon}_{f} \cdot \int d^{3} x^{\prime} \vec{J}\left(\vec{x}^{\prime}\right) \exp \left\{-i \vec{k} \cdot \vec{x}^{\prime}\right\}
\end{aligned}
$$

The polarized scattering cross section

Suppose the incident wave has a definite polarization \hat{e}_{i}.
The scattered wave will have both outgoing polarizations, but let's assume that what is observed is the polarization \hat{e}_{f}. The cross section for this process is $(\mathrm{d} \sigma / \mathrm{d} \Omega)_{f, i}$. (element of a 2×2 matrix) $\left(\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right)_{f, i}=\left|\hat{e}_{f} \cdot \vec{f}_{i}\left(\vec{k}, \vec{k}_{0}\right)\right|^{2}$
$=\frac{k^{2}}{c^{2}\left|E_{0}^{2}\right|}$

- $\left|\hat{\epsilon}_{f} \cdot \int d^{3} x^{\prime} \vec{J}_{(i)}\left(\vec{x}^{\prime}\right) \exp \left\{-i \vec{k} \cdot \vec{x}^{\prime}\right\}\right|^{2}$
$\left(\frac{d \sigma}{d \Omega}\right)_{\text {unpol }}=$ average and sum
$=\frac{1}{2} \sum_{i, f=1}^{2}\left(\frac{d \sigma}{d \Omega}\right)_{f, i}$

Next we need to calculate the current density $\vec{J}(\vec{x})$.
Remember, the current density is created by the incident wave.
Also, what kind of object is scattering the light?

