
Section 12.3
Short wavelength scattering from a 
conducting sphere

See also, Jackson Section 10.10
In[2367]:= sc31

Out[2367]=
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The Kirchhoff identity for scattering

ϵ
⋀

f  • f

 k , k0 =

ik
4π E0   ∮S da’ e–i k . x '

   ▫  {  n '
⋀

 × B sc + k
⋀
 × ( n '

⋀
 × Esc  ) }

(12.49)
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Short wavelength scattering
In[2368]:= sc32

Out[2368]=
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We write

E ( x ) = E inc( x ) + E sc( x )
B ( x ) = B inc( x ) + B sc( x )
Now to integrate over S, we’ll impose some 
boundary conditions.
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Exact boundary conditions
For all points on S,

▮  n '
⋀

 • ( B inc + B sc) = 0

▮  n '
⋀

 × ( E inc + E sc) = 0
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Approximate boundary conditions
Because we don’t know σ and Κ on S, we will 
make  some approximations, valid for ka ≫ 
1, based on physical observations. 

λ ≪ a implies ka ≫1

▮ On S, on the shadow side, E  = B  = 0 . 
(shadow)

▮ On S, on the illuminated side, use the 
boundary conditions that correspond to 
reflection from a flat conducting surface 
(the law of equal angles, with Fresnel’s 
ideas about polarization)

  n '
⋀

 • E sc  = n '
⋀

 • E inc  (illuminated)

  n '
⋀

 × B sc  = n '
⋀

 × B inc

One might think a little more about this...
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★ Thus we assume, as reasonable approxima-
tions for the limit ka ≫ 1,

(54)  E sc(sh) ≈ – E inc

(55)  B sc(sh) ≈ – B inc

(56)  E sc(ill)  

   ≈  n '
⋀

 (n '
⋀
• E inc) + n '

⋀
 × ( n '

⋀
× E inc )

(57)  B sc(ill)  

   ≈ – n '
⋀

 (n '
⋀

 B inc) – n '
⋀
× (n '

⋀
 × B inc)
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The scattering amplitude

ϵ
⋀

f  • f


  = ϵ
⋀

f  • fsh  + ϵ
⋀

f  • fill  

  fsh = ∫ S,shadow side 

  fill  = ∫ S,illuminated side
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● Contribution from the shadow side of S

 ϵ
⋀

f  • fsh = ik
4π E0

  ∫Ssh da’ e–i k . x '  ϵ
⋀

f  •

   ▫ {  n '
⋀

 × Bsc + k
⋀
 × ( n '

⋀
 × Esc  ) }

.

  = –ik
4π E0

  ∫Ssh da’ e–i k . x '  ϵ
⋀

f  •

   ▫ {  n '
⋀

 × Binc + k
⋀
 × ( n '

⋀
 × Einc  ) }

.

  = –ik
4π   ∫Ssh da’ e–i k . x ' e+i k0. x '  ϵ

⋀
f  •

   ▫ {  n '
⋀

 × k0

⋀
× ϵi

⋀
 + k

⋀
 × ( n '

⋀
 × ϵi

⋀
  ) }

▮ Note the factor exp{ i ( k 0–k ) • x ' }.
▮ Note the incident polarization.

▮  n '
⋀

 × k0

⋀
× ϵi

⋀
 = k0(n’.ϵ)–ϵ(n’.k0)

    = k0

⋀
 ( n '

⋀
 • ϵi

⋀
 )  + k0

⋀
 × ( n '

⋀
 × ϵi

⋀
 ) 

Result so far is  ϵ
⋀

f  • fsh = 

 = –ik
4π   ∫Ssh da' e–i k – k0. x '  ϵ

⋀
f  •

 ▫{  k0

⋀
 ( n '

⋀
 • ϵi

⋀
 ) + ( k0

⋀
 + k

⋀
 ) × ( n '

⋀
 × ϵi

⋀
 ) }
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Result so far is  ϵ
⋀

f  • fsh = 

 = –ik
4π   ∫Ssh da' e–i k – k0. x '  ϵ

⋀
f  •

 ▫{  k0

⋀
 ( n '

⋀
 • ϵi

⋀
 ) + ( k0

⋀
 + k

⋀
 ) × ( n '

⋀
 × ϵi

⋀
 ) }
(12.60)

Because ka ≫1 we can approximate the inte-
gral, as follows. The factor 
exp {-i (k - k0).x’ } oscillates rapidly as a 

function of x ', unless k  ≈ k 0. So we can 

set k  = k 0 in {...}. After a little algebra,
⟹

  ϵf
⋀

 • {...}  ≈  –2 ( ϵf
⋀

 • ϵi
⋀

)  k
⋀

0 • n '
⋀
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Evaluation of the integral
In[2390]:= eq62

Out[2390]=
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In[2591]:= dap = a^2*Sin[α]; (* dα dβ *)

npDOTk0 = Cos[α];

osc = Cos[X*Sin[α]*Cos[β]]; (* X = ka*Sin[θ] *)

Style[{"integrand=", dap*npDOTk0*osc}, Red, 32]

ξ = Assuming[λ > 0,

Integrate[Cos[λ*Cos[β]], {β, 0, 2 Pi}]];

ξ = ξ /. {λ → X*Sin[α]};

Style[{"I dβ = ", ξ}, Red, 32]

ζ = Integrate[Sin[α]*Cos[α]*ξ, α];

ζ = ζ /. {α → Pi/2}

Style["failure of Mathematica", Red, 32]

Out[2593]= integrand=,

a2 Cos[α] Cos[X Cos[β] Sin[α]] Sin[α]

Out[2596]= {I dβ = , 2 π BesselJ[0, X Sin[α]]}

Out[2598]= π Hypergeometric0F1Regularized2, -
X2

4


Out[2599]= failure of Mathematica

The integral is 2πa2 J1(ka sinθ) / (ka sinθ).
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The shadow-side contribution to the polar-
ized cross section is

  
dσ
dΩ [fi;sh] = k 2 a4  J1(ka sinθ)

ka sinθ 
2
  Bϵf  • ϵiC 2  

(65)

(For now we’ll ignore interference
between the shadow and illuminated

contributions.)
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The contribution to the unpolarized cross 
section is calculated by “sum and average” ⇒
1
2  Σ

i ,f
 Bϵf  • ϵiC 2 = 1

2  ( 1 + cos2 θ ) = 1 + 

O (ka)-2 ≈ 1

  
dσ
dΩ [un;sh] = k 2 a4  J1(ka sinθ)

ka sinθ 
2
   (66)

θ ≲ 1/(ka)
The total  cross section from the shadow 
side is
  σsh = π a2     (67)

Does it make sense? It seems obvious
but actually it's a little surprising.

See Jackson Section 10.10.
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In[2647]:= (* Jackson, Figure 10.16 *)

{ka = 10, a = 1}

LogPlot1/(a^2/4)*(

a^2/4 +

a^2*(BesselJ[1, ka*Sin[θ/180*Pi]])^2/

(Sin[θ/180*Pi])^2),

{θ, 0, 180}, PlotRange → {{0, 180}, {0.1, 100}},

PlotStyle → Thickness[0.01],

PlotLabel → "(4/a2)(dσ/dΩ) v. θ",

Frame → True, ImageSize → 768,

BaseStyle → {FontSize → 32}

Out[2647]= {10, 1}
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Out[2648]=
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(4/a2)(dσ/dΩ) v. θ
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In[2659]:= jackson

Out[2659]=
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● Contribution from the illuminated side of S
We need to calculate this:

ϵ
⋀

f  • fill  =

 = –ik
4π   ∫Sill da’ e–i k – k0. x '  ϵ

⋀
f  •

 ▫{ –k0

⋀
 ( n '

⋀
 • ϵi

⋀
 ) – ( k0

⋀
 – k

⋀
 ) × ( n '

⋀
 × ϵi

⋀
 ) }   

(68)

It looks similar to fsh, but it is different.

We cannot approximate k  ≈ k0 !
But we can use the stationary phase 
approximation.
The exponential is rapidly oscillating except 
where the phase is stationary as a function 

of x '.

See WT pages 652 ~ 655.

The phase is stationary when the angle of 
incidence is equal to the angle of reflec-
tion, as we expect from geometrical optics
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The phase is stationary when the angle of 
incidence is equal to the angle of reflec-
tion, as we expect from geometrical optics

In[2370]:= figure12p3

Out[2370]=
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The final result is

  ϵf
⋀

 • fill ≈ a
2  exp{–2ika sin(θ/2)} ϵf

⋀
 • ϵi

⋀
   (77)

For unpolarized scattering, the contribu-
tion from the illuminated side is (we could 
have guessed this)

  
dσ
dΩ [un;ill] = a2

4   (80)

θ ≫ 1/(ka)
and the total cross section is
  σill ≈ π a2 .
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A Puzzle
The total cross section (σsh+ σill) is 2π a2 = 
2 × the geometrical cross section. That 
can't be right, can it?
Resolution of the puzzle

In[2371]:= p655

Out[2371]=
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Section 12.4 : The optical theorem
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Homework assignment 11
Pr 11-1 = Exercise 12.1.1
Pr 11-2 = Exercise 12.3.1
Pr 11-3 = Exercise 12.3.2
Pr 11-4 = Exercise 12.3.4
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