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Section 12.3
Short wavelength scattering from a
conducting sphere

See also, Jackson Section 10.10
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The Kirchhoff identity for scattering

A >/ = _ ik , -/'/;).)_()'
Ef‘f k'ko_47TEO Sdae

N A N
s { n'xBsc+kx(n'"xE.)}
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(12.49)
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Short wavelength scattering
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Fig. 12.2 Small-wavelength

side.
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scattering from a

conducting sphere, with shadow and illuminated
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We write

- - -

E(X) End X)+ Eo( X)

B(X)= Bin( X)+ Bso( X)

Now to integrate over S, we'll impose some
boundary conditions.




Exact boundary conditions

For all points on S,
A

- -
BN *(Bin+Bs)=0

A - -
BN x(Eipc+Es)=0

Approximate boundary conditions

_)
Because we don't know g and K on S, we will
make some approximations, valid for ka >
1, based on physical observations.

A < a implies ka >1
- -

B OnS, onthe shadow side, E =B =0.
(shadow)

B On S, on the illuminated side, use the
boundary conditions that correspond to
reflection from a flat conducting surface
(the law of equal angles, with Fresnel's

ideas about polarization)
A - A -
n'*Eeq =n'"* Ein (illuminated)

A - A N
n' xBg =n" x By

One might think a little more about this...




* Thus we assume, as reasonable approxima-
tions for the limit ka > 1,

> >
(54) Esc(sh) = - Einc

X

%
(55) Bgc(sh) = - Binc

%
6) E (il

N - A N -

(ne Ein)tn x(n'x Einc)

~
~

A
n
-
B (ill)

NN S A A N
=-n'"(n" Bin)-n'x(n'" x Biy)

(57)

The scattering amplitude

A =4 A S A —>
€rof =€ fon +Er° ful

—
fon =

f S ,shadow side

ﬁ
fur = | 5 illuminated side




® Contribution from the shadow side of S

2 . f_) - L f da’ e-/'/?.)_()' 2 o
1A

N —_ N —_
= {n" xBse+kx(n' xE )}

_ ik //;))_() A R
B 47TEO fSSh €f
A
{ﬂ mec"'kx(” xEmc )}
- "lk jssh / e+/'ko.)_()' é\-f .

A A

{ n x(koxe)+kx(n' &)}
e
® Note the factor exp{ i (ko-k)*x" }.
® Note the incident polarization.
A A
1N x (ko < 2,.) - KO(n'.€)-€(n'.kO)

NN A A A
=hko(n' =€) +hkx(n' xe)

. A —>
Result so faris €7 ¢ fqn =

-ik ' kk A
_I szh 0) €r®

A

°{ ko(n e )+ (ko+/<) (n'x€))
(12.60)
Because ka >>1 we can approximate the inte-
gral, as follows. The factor
exp{-i (k - kp).x" } oscillates rapidly as a

o 2 2
function of x', unless k = k. So we can

> -
set k = kg in{..}. After a little algebra,

el
A A

€ro (.} = -2(Er+¢€) (ko-n')
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Evaluation of the integral
w0 €062

which gives

- (12.62)

FAT)

- = = ikE* - Ep T
€ - fan(k, ko) = = [ da’ e MWF=RE RS L kg,
Jsh

As we said, for ka % 1 the exponential is highly oscillatory, implying the integral is
appreciably different from zero only for # ::: 1/ (%), Under these conditions (take 27
- Sl

along k)

2591]

112599}

s JTHypergeometr'ic@FlRegular-ized[2, 71]
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dap=a*2xSin[a]; (*» da dB =*)
npDOTkO = Cos[a];
osc = Cos[X*Sin[a] *Cos[B]]; (* X = kaxSin[6] =*)
Style[{"integrand=", dap * npDOTkO * osc}, Red, 32]
& = Assuming[A > 0,
Integrate[Cos[AxCos[B]], {B, ©, 2Pi}]];
E=€ /. {X > X*xSin[a]};
Style[{"I dB =", &£}, Red, 32]
€ = Integrate[Sin[a] *Cos[a] *&§, al}
€=t /. {a » Pi/2}
Style["failure of Mathematica", Red, 32]

ka{integrandz,

a’ Cos[a] Cos[X Cos[B] Sin[a]] Sin[al}

v {I dB = , 2 1Besseld [0, XSin[a]]}

X2

~failure of Mathematica

The integral is 2 ma® J1(ka sinB)/ (ka sinb).




The shadow-side contribution to the polar-
ized cross section is

i 2
do  _,2 4(J1(kasm6)) L2
dQ [fl,'Sh]-k a kClSine |Ef E/l
(65)

(For now we'll ignore interference
between the shadow and illuminated
contributions.)

The contribution to the unpolarized cross
section is calculated by "sum and average” =

%Z |Ef-€,-|2:%(1+c0529):1+

O[(ka)*] = 1
da 2 4 Jl(kasin@))z
dQ nish) = K° @ ( kasin@ (&)

0 s 1/(ka)
The total cross section from the shadow
side is
On=TTa® (67
Does it make sense? It seems obvious
but actually it's a little surprising.

See Jackson Section 10.10.
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o (% Jackson, Figure 10.16 =)
{ka =10, a=1}
LogPlot[1/ (a"2/4)  (
ar2/4+
afr2x (BesselJ[1l, kaxSin[6e/180%Pi]]) "2/
(Sin[6/180 % Pi]) 72),
{6, 0, 180}, PlotRange -» {{0, 180}, {0.1, 100}},
PlotStyle -» Thickness[0.01],
PlotLabel » " (4/a°) (do/dQ) v. e",
Frame » True, ImageSize -» 768,
BaseStyle -» {FontSize - 32}]

Out[2647)= {10 ) l}

100

(4/a°)(do/dQ) v. 6
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Figure 10.16 Semilogarithmic plot of the scattering cross section for a perfectly
conducting sphere as a function of scattering angle, with an unpolarized plane wave
incident and ka = 10. The solid curve is the exact result (King and Wu). The dashed
curve is the approximation based on the sum of the amplitudes (10.127) and {10.132)
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® Contribution from the i/lluminated side of S

We need to calculate this:
A —_
€« fn =

- ilk-ki) %' A
7 Jsdae R
A ANoA AN A A
{-ko(n'-€)-(k-k)x(n xe)}
(68)
It looks similar to fg,, but it is different.

. - -
We cannot approximate k = ky |
But we can use the stationary phase
approximation.

The exponential is rapidly oscillating except
where the phase is stationary as a function

—
of x'.

See WT pages 652 ~ 655.
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The phase is stationary when the angle of
incidence is equal to the angle of reflec-

tion, as we expect from geometrical optics
v Figurel2p3

Interior
of sphere

Out[2370}=

Fig. 12.3 Geometry of scattered wave (illuminated
side), showing one possible polarization.
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The final result is
A — A A
Er* f;” = % exp{—Zika sin(@/Z)} Er* € (77)

For unpolarized scattering, the contribu-
tion from the illuminated side is (we could
have guessed this)

do _d*
4 [unill = "4 (80)

6 > 1/(ka)

and the total cross section is

(OH] ~ 1 a® .
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A Puzzle

The total cross section (og+ Oy is 2 7T a® =
2 x the geometrical cross section. That
can't be right, can it?

Resolution of the puzzle
(28712 p655

(12.81), is 2ma®. The reader might worry over this
situation because this is twice the geometrical cross
section. Since the cross section is just a power
distribution divided by the incident flux, does this
mean we extract energy from a scattering event? This
nonintuitive result occurs because the incoming fields
are both scattered from the illuminated surface and
forward scattered to form the shadow by destructive
interference with the incident wave. Thus half of the
associated scattered energy is bound up in the
shadow and is unavailable. There are no free lunches
in physics!

Section 12.4 : The optical theorem
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Homework assignment 11
Pr 11-1 = Exercise 12.1.1

Pr 11-2 = Exercise 12.3.1
Pr 11-3 = Exercise 12.3.2
Pr 11-4 = Exercise 12.3.4




