
$2-$
Let $\psi(\vec{x}, \mathrm{t})$ be a scalar field, with
$\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi(\vec{x}, \mathrm{t})=\sigma(\vec{x}, \mathrm{t})(=$ sources $)$
Suppose the sources and $\psi(\vec{x}, \mathrm{t})$ are harmonic in time, with frequency $\frac{\omega}{2 \pi}$.
$\psi(\vec{x}, \mathrm{t})=\psi(\vec{x}) e^{-i \omega t}$
In the diffraction region (Region II)
$\left(\nabla^{2}+k^{2}\right) \psi(\mathrm{x})=0$ where $\mathrm{k}=\omega / \mathrm{c}$.
$=$ the Helmholtz wave equation

The Green' s function $G\left(\vec{x}, \overrightarrow{x^{\prime}}\right)$ $G\left(\vec{x}, \overrightarrow{x^{\prime}}\right)$ is partially defined by
$\left(\nabla^{2}+k^{2}\right) G\left(\vec{x}, x^{\prime}\right)=-\delta^{3}\left(\vec{x}-\overrightarrow{x^{\prime}}\right)$
(Jackson's convention)
We'll also need boundary conditions, later.
Recall the second Green identity,

$$
\begin{aligned}
& \int_{V} d^{3} x\left(\psi \nabla^{2} \phi-\phi \nabla^{2} \psi\right)= \\
& \quad=\oint_{S} \operatorname{da}(\psi \hat{n} \cdot \nabla \phi-\phi \hat{n} \cdot \nabla \psi)
\end{aligned}
$$

Let $\phi=\mathrm{G}$ and $\psi=\psi \Rightarrow$

$$
\psi(\vec{x})=\oint_{S} \mathrm{da}^{\prime}\left[\psi\left(\overrightarrow{x^{\prime}}\right) \hat{n}^{\prime} \cdot \nabla^{\prime} \mathrm{G}-\mathrm{G} \hat{n}^{\prime} \cdot \nabla^{\prime} \psi\left(\overrightarrow{x^{\prime}}\right)\right]
$$

6 1 sact5..nb
3-

The Kirchoff diffraction integral

Take $G\left(\vec{x}, \overrightarrow{x^{\prime}}\right)$ be the free space Green's function for outgoing waves
corresponds to certain boundary conditions

$$
G\left(\vec{x}, \overrightarrow{x^{\prime}}\right)=\frac{e^{i k R}}{4 \pi R} \text { where } \mathrm{R}=\left|\vec{x}-\overrightarrow{x^{\prime}}\right|
$$

Jackson's convention

$$
\Longrightarrow
$$

$$
\psi(\vec{x})=\oint_{S} \operatorname{da}^{\prime} \frac{e^{i \mathrm{kR}}}{4 \pi R} \hat{n}^{\prime} \bullet
$$

$$
\left[-\nabla^{\prime} \psi\left(\overrightarrow{x^{\prime}}\right)-\mathrm{ik}\left(1+\frac{i}{\mathrm{kR}}\right) \frac{\vec{R}}{R} \psi\left(\overrightarrow{x^{\prime}}\right)\right]
$$

■ Now, we want $V=$ Region II and $S=S_{1}+S_{2}$

- On S_{2} (the boundary surface at infinity)
$\psi\left(\vec{x}^{\prime}\right) \longrightarrow \frac{e^{\mathrm{ikr}}}{r} \mathrm{f}(\theta, \phi) \quad \sim \mathrm{O}(1 / \mathrm{r})$
$\nabla^{\prime} \psi\left(\vec{x}^{\prime}\right) \quad \sim \mathrm{O}(1 / r)$
$\oint_{S_{2}}(\ldots) \sim \mathrm{O}(1 / r)$ (exercise) $\longrightarrow 0$.
■ Thus,

$$
\begin{align*}
& \psi(\vec{x})=\int_{S_{1}} \mathrm{da}^{\prime} \frac{e^{i \mathrm{kR}}}{4 \pi R} \hat{n}^{\prime} \cdot \\
& \quad\left[-\nabla^{\prime} \psi\left(\overrightarrow{x^{\prime}}\right)-\mathrm{ik}\left(1+\frac{i}{\mathrm{kR}}\right) \frac{\vec{R}}{R} \psi\left(\overrightarrow{x^{\prime}}\right)\right] \tag{10.79}
\end{align*}
$$

4-

(10.79)

$$
\begin{aligned}
& \psi(\vec{x})=\int_{S_{1}} \mathrm{da}^{\prime} \frac{e^{i \mathrm{kR}}}{4 \pi R} \hat{n}^{\prime} \bullet \\
& \quad\left[-\nabla^{\prime} \Psi\left(\overrightarrow{x^{\prime}}\right)-\mathrm{ik}\left(1+\frac{i}{\mathrm{kR}}\right) \frac{\vec{R}}{R} \psi\left(\overrightarrow{x^{\prime}}\right)\right]
\end{aligned}
$$

Eq. (10.79) is the Kirchhoff integral formula for a scalar field.
Here is what it means:
The field throughout the diffraction region (=
Region II) is determined by the field on the diffracting screen ($=S_{1}$).
Now the question is, how can we use Eq. (10.79)?

Kirchhoff's approximation

(1) $\psi=0$ and $\partial \psi / \partial \mathrm{n}=0$ for all points on S_{1}, except in the apertures.
(2) In the apertures of S_{1}, ψ and $\partial \psi / \partial$ n are equal to the values of the incident plane wave if there were no screen.

Jackson states that "the standard diffraction calculations of classical optics are all based on the Kirchhoff approximation."

But Jackson points out that "the approximations (1) and (2) are mathematically inconsistent"; and "(10.79) does not yield the assumed values of ψ and $\partial \psi / \partial \mathrm{n}$ in the apertures.

10 | scat5b.nb
5-
The Kirchhoff approximation may provide a qualitatively correct picture of diffraction, but for an accurate theory we need something better.

Furthermore, this is only scalar diffraction theory. For light and other E.M. waves we need a vector extension of Kirchhoff's integral formula.

Further developments

Eq (10.79) can be improved by using a better Green's function.

For example, let $G_{D}\left(\vec{x}, \overrightarrow{x^{\prime}}\right)$ be the Green's function for Dirichlet boundary conditions; i.e.,

$$
G_{D}\left(\vec{x}, \overrightarrow{x^{\prime}}\right)=0 \text { for } \overrightarrow{x^{\prime}} \in \mathrm{S} \text {. }
$$

Use G_{D} instead of the free Green's function G. Then (10.79) is replaced by

$$
\begin{equation*}
\psi(\vec{x})=\int_{S_{1}} \text { da' } \psi\left(\overrightarrow{x^{\prime}}\right) \hat{n} \cdot \nabla^{\prime} G_{D}\left(\vec{x}, \overrightarrow{x^{\prime}}\right) \tag{10.81}
\end{equation*}
$$

Now we can consistently assume that $\psi=0$ on S_{1} except in the apertures, and $\psi=$ the incident wave in the apertures.
Alternatively, we could use the Green's function $G_{N}\left(\vec{x}, \overrightarrow{x^{\prime}}\right)$ for Neumann boundary conditions, and approximate $\partial \psi / \partial \mathrm{n}$ ' on the screen.

6-
A special case, relevant to Fraunhofer diffraction.
Suppose the diffraction screen ($=S_{1}$) is an infinite plane (with apertures).
Then, using the Dirichlet boundary conditions (and ψ approximated on S_{1}),

$$
\psi(\vec{x})=\frac{k}{2 \pi i} \int_{S_{1}} d a^{\prime} \frac{i^{i k R}}{R}\left(1+\frac{i}{\mathrm{kR}}\right) \frac{\hat{\mathrm{n}}^{\prime} \cdot \vec{R}}{R} \psi\left(\overrightarrow{x^{\prime}}\right)
$$

The Fresnel Huygens Integral
Finally, Jackson's Eq (10.86):
$\psi(\mathrm{P})=\frac{k}{2 \pi i} \int_{\text {apertures }}$ da' $\frac{e^{i k r}}{r} \frac{e^{i k r^{\prime}}}{r^{\prime}}$ ob $\left(\theta, \theta^{\prime}\right)$
where Ob is the obliquity factor
$\mathrm{Ob}= \begin{cases}\cos \theta & \text { Dirichlet b.c. } \\ \cos \theta^{\prime} & \text { Neumann b.c. }\end{cases}$

Quiz
The quiz is a question that every physicist should be able to answer.

In words and pictures, describe and explain ...

