Describe and explain the Arago spot.

(1) It is the tiny bright spot in the shadow
of a smooth sphere. (2) It is an example of
Fresnel diffraction, occurring in the near
zone. (3) It come from constructive interfer-
ence of Huygens wavelets emitted around
the projected circumference of the sphere.
(4) It was the Ewyerimentum Crucis for the wave
theory of light.
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Problem | 1-5. From the Oxford Dictionary of
Physics...

Fraunhofer diffraction: the light sourer and receiv-
ing screen are in effect at infinite distances from
the diffracting object, so that wave fronts are pla-
nar. (2 points)

Fresnel diffraction: the light source or receiving
screen or both are at finite distances from the
diffracting object, so that wave fronts are not
planar.
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Scalar diffraction examples

Review

Last time we derived the general equations for
scalar diffraction theory. (Jackson, Section 10.9
AND W/ilcox-Thron Section 12.6)

B To do a scalar diffraction calculation we have sev-

eral choices:

« Kirchhoff approximation; Gec(x,x’) = €®/R
« Dirichlet boundary condition; Gp(x,x’)

« Neumann boundary condition; Gn(x,x)

B The usual “song and dance” gives

o(%) = L§ da [a,,c;(}, 7) O(x) = 3,5( x) G( %, x) ]
(12.155)

2nd term = 0 for Dirichlet b.c
| st term = 0 for Neumann b.c.
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#The surface integral reduces to integration over
the aperture(s) where we approximate either ®
or 9,0 by the incident wave.

In the Fraunhofer approximation,
2\ — ikFek da’ . 7(’ _k) =
O x) = 5 @ [, da’ exp{—i ( k-ko) * x"}
(12.165)

A D
where Fp = cos 8and Fy = —cos a =—n'- ko.
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Scalar diffraction examples (WT Section 12.7)

Example 1: Plane waves incident on a
circular aperture at non-normal incidence

Start with eq (12.165), and use cylindrical coordi-
nates (o', ¢, Z)).
_)
x'={p cos¢’, p sing’, 7'}
at Z = 0 in the aperture
k_o) =k {sina, 0, cosa} ;
a = the angle of incidence
_k) =k { sin@ cos¢, sinb sing , cosO }
Draw a picture.
e
( k— ko) e x' =
= kP (sinBcos(¢p—¢ ) —sina cosg’)
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Define A and 6 by
A cos(¢’'+ 6) = sinf cos(¢p—¢’ ) — sina cos@’
Solve for A

A? = sin%6 + sina — 2 sina sind cosg
we won't need 0
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alrm

Exercise Evaluate [ [ dd o' d¢' (.) =
00

, e e N (ka A)
[, da exp[—l(k—ko)-x]=2n% j'T

The field in the diffraction region is

> _ iFaek Ji(kad)
( x) = - P T
and the “differential transition rate” is
dT  dPgy
dQ  P,dQ

dr _ _P (j|(kaA) )2
dQ  rcosa A
see Exercise 13.10.4;

what is the scalar ‘Poynting vector’?
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Maximum amplitude

The waves are coming in at angle of incidence a.
In what direction (6, ¢) is the maximum intensity?

The max occursatA =

0. Theincidentwave has ¢ = 0,
i.e., alongthe xaxis; then A? = (sinf—sina)?.
A =0 = 6 = a, which agrees with geometrical
optics.

« Plot[BesselJd[1, x] / X,
{x, -20, 20}, PlotRange » {All, All}]
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Example 2 : Diffraction from a long slit of
width d, at normal incidence

Same figure as the quiz.

Start here
_ ik Fer : P
O(x) = ﬁ ®o [ da’ exp[ -i ke x

+ il<p'2/(2 )]
(12.180)

where
F = { cos¢ Dirichletb.c.

- Neumann b.c.
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Derive (12.180)
- expy ik | }—)7 |

G(X, x") { = }

I |

n2

- -
x'|= r— nex' + % (far zone)
Usually we drop the third term but now we will
keep it for greater accuracy.
Cylindrical coordinates: X=p {sing,0, cosy };
k = n{siny, 0, cosy }
i.e., observation occurs in the xz-plane.
Incident waves are normal, so ko = €, = {0,0,1};

x4
x

| X -

Q

> 3
s elko-X — 1in the slit.
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The integral [[ dx’ dy’ [..]
slit in the xy-plane
X]=d; [y']=00; "= 0
> -
[ i 92" exp[ —i ke x' +ik p'* /(2 p")] = Iy Ix

Iy = [ dy' exp[iky'*/(20)]

Ix = _(4/22 dx' exp[ ik x'*/(2p) — i kx' siny ]

X'={X,y, 0}
Kk = k{siny, 0, cosy}
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We'll need the Fresnel Integrals, defined
C(u) = [ dt cos(rt/2)
S(u) = [§ dt sin(rt?/2)

? FresnelC

? FresnelS

FresnelC[z] gives the Fresnelintegral C(z). >>

FresnelS[z] gives the Fresnel integral S(z). >




«-Plot[FresnelC[u], {u, -10, 10}]

Plot[FresnelS[u], {u, -10, 10}]

[ s m

‘
-10 -5
WMWM/\N\/\/\/\/\/\%
0.6

Properties:
Both C(u) and S(u) are odd functions of u.

C(e0) = S(e) = 3
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Integral Iy
Iy = Iy = [ dy' exp[iky™/(2p)]
= [ dy' { cos(Ay"?) +isin(Ay"?) }

A= k/(2p)
Ay?=mt?2

=2 E [ Cloo)*iS(e) =2 [ 222 L (1)

= /%(lw‘)
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Integral Ix
Ix= [ 4/2 dx’ exp[ ik (x')%/(2p) —i k X’ siny ]

=f_d/2 dx’ exp[ ik/(2p) (x2 =2 X psiny)]
= J.g/zz dx’ exp[ ik/(2p) (x'— psing)?]

= exp[-i (kp /2) sin*y ]

= exp[ — i (kp /2) Sinz(»U] \/g

= { C(a—b)+iS(a—b) —C(—a—b) —iS(—a—b) }
where

_ /de — /k_P- - /M
a 2 and b = sin y o

N.B.x=psiny
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2
Define the Fresnel number, Nf = Sk;i

a = 1/2Nr and b = /2 N¢ (2x/d)

The “differential transition rate” is defined by

9
ﬂ:g q)(x)lz:B(i)ZIZIXZ
dy d |dg|? d \2mp y
as a function of p and y; x = p siny.
Interesting exercise: plot dT/d€)

for various values of p, d, A.
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The Fraunhofer limit

Take the limit p — oo .
As U — * o,

C(u) = ;— sign(u) + n'u—sin(
S(u) = % sign(u) — n'u—cos(

u?)
2
2 47)
Exercise 12.7.3 = “beautiful and simple Fraun-

hofer slit diffraction formula”

dT _ 2F2 sin("z—d sim,u) 2
dy  mkd siny

IT
2
b1
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wr- (% plot =)

(*Remove ["Global x'"]

*)F[¢¥_] = {Cos[y], -1}[[1]1];

d=1;2=0.1; k=2x/2; kxd

dT[¥ 1 =2F[¥]172/ (mxkxd)

Power [Sin[kxd /2% Sin[¢]] /Sin[¥], 2]}

plt[1] = LogPlot[dT[¥], {¢, -Pi/2, Pi/2},
PlotRange » {{-Pi/2, Pi/2}, {0.001, 10}},
PlotStyle » Thickness[0.01],
BaseStyle » {24}, ImageSize -» 480]

ouf-J- 62.8319
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Nodes occur at kd sin ¢, = 2rrn; neZ
Compare Dirichlet and Neumann assumptions ...




