Cherenkov Radiation : The Frank-Tamm formula

Jackson, Sections 13.3.and 13.4
A charged particle moves with constant velocity in a dielectric material. Cherenkov radiation is emitted if the speed of the particle is greater than the speed of light. Now, calculate the intensity \equiv the energy flux.
$\frac{d^{2} E}{d x d \omega}=$ radiated energy per unit length of the path, per unit frequency

2 | lecture.nov19.final.nb
Parameters

$$
\begin{aligned}
& \text { charge }=z e \\
& \text { velocity }=\vec{v}=v \hat{e}_{x} ; \text { also } \beta=v / c \\
& \epsilon(\omega)=\text { permittivity } \\
& n(\omega)=\sqrt{\epsilon(\omega)}=\text { index of refraction. }
\end{aligned}
$$

The Frank-Tamm formula (in Gaussian units)

$$
\begin{gathered}
\frac{d^{2} E}{d x d \omega}=\frac{z^{2} e^{2}}{c^{2}} \omega\left(1-\frac{1}{\beta^{2} \epsilon(\omega)}\right) \\
\quad \Theta\left[\epsilon(\omega) \beta^{2}-1\right]
\end{gathered}
$$

3 $\begin{aligned} & \text { Calculate } \rho(\vec{k}, \omega) \\ & =\frac{1}{(2 \pi)^{2}} \int d^{3} x \int d t \text { ze } \delta^{3}(\vec{x}-\vec{v} t) \exp \{-i(\\ & \vec{k} \cdot \vec{x}-\omega t)\} \\ & =\frac{z e}{(2 \pi)^{2}} \int d t \exp \{-i(\vec{k} \cdot \vec{v} t-\omega t)\} \\ & =\frac{z e}{2 \pi} \delta(\omega-\vec{k} \cdot \vec{v}) \end{aligned}$ - $\vec{J}(\vec{k}, \omega)=\vec{v} \rho(\vec{k}, \omega)$ because \vec{v} is constant.	Maxwell's equations, in spacetime $\nabla \cdot \vec{B}=0$ and $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{c \partial t}$ homogeneous equations $\nabla \cdot \vec{D}=4 \pi \rho \text { and } \nabla \times \vec{H}=\frac{4 \pi}{c} \vec{J}+\frac{\partial \vec{D}}{c \partial t}$ inhomogeneous equations

Second,

$$
\begin{aligned}
& i \vec{k} \times \vec{B}=\frac{4 \pi}{c} \vec{J}-\frac{i \omega}{c} \vec{D} \\
& i \vec{k} \times(i \vec{k} \times \vec{A})=\frac{4 \pi}{c} \vec{J}-\frac{i \omega}{c} \epsilon\left(-i \vec{k} \Phi+\frac{i \omega}{c} \vec{A}\right) \\
& -\vec{k}(\vec{k} \cdot \vec{A})+k^{2} \vec{A}=\frac{4 \pi}{c} \vec{J}-\epsilon \frac{\omega}{c} \vec{k} \Phi+\frac{\omega^{2}}{c^{2}} \epsilon \vec{A} \\
& {\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right] \vec{A}=\frac{4 \pi}{c} \vec{J}+\vec{k}(\vec{k} \cdot \vec{A})-\epsilon \frac{\omega}{c} \vec{k} \Phi} \\
& {\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right] \vec{A}=\frac{4 \pi}{c} \vec{J}+\vec{k}\left\{\vec{k} \cdot \vec{A}-\epsilon \frac{\omega}{c} \Phi\right\}}
\end{aligned}
$$

12 | lecture.nov19.final.nb
7
So, make this gauge choice

$$
\vec{k} \cdot \vec{A}-\epsilon \frac{\omega}{c} \Phi=0
$$

Exercise: write the gauge choice in spacetime
\Rightarrow we have these wave equations

$$
\begin{align*}
& {\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right] \Phi=\frac{4 \pi}{\epsilon} \rho} \\
& {\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right] \vec{A}=\frac{4 \pi}{c} \vec{J}} \tag{13.22}
\end{align*}
$$

14 | lecture.nov19.final.nb
The potentials

$$
\begin{aligned}
& \Phi=\frac{4 \pi}{\epsilon} \frac{\rho}{\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right]}=\frac{2 z e}{\epsilon} \frac{\delta(\omega-k \cdot v)}{\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right]} \\
& \vec{A}=\frac{4 \pi}{c} \frac{\vec{J}}{\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right]}=\frac{4 \pi}{c} \frac{\vec{v} \rho}{\left[k^{2}-\frac{\omega^{2} \epsilon}{c^{2}}\right]}=\frac{\vec{v}}{c} \epsilon \Phi
\end{aligned}
$$

The fields

$$
\begin{aligned}
& \vec{E}=-i \vec{k} \Phi+\frac{i \omega}{c} \vec{A} \\
& \vec{E}(\vec{k}, \omega)=\mathrm{i}\left[-\vec{k}+\frac{\omega \epsilon(\omega)}{c} \frac{\vec{v}}{c}\right] \Phi(\vec{k}, \omega) \\
& \vec{B}(\vec{k}, \omega)=\mathrm{i} \epsilon(\omega) \vec{k} \times \frac{\vec{v}}{c} \Phi(\vec{k}, \omega)
\end{aligned}
$$

8

The radiated energy

Draw a picture.
Let $\vec{v}=v \hat{e}_{x}$.
Consider points on the cylinder of radius b around the $x a x i s$. Say $\vec{x}=b \hat{e}_{y}$ is the observation point. By cylindrical symmetry, the power is independent of azimuthal angle ϕ.
There the electric field, still in frequency space, is
$\vec{E}\left(b \hat{e}_{y}, \omega\right)=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} \vec{E}(\vec{k}, \omega) e^{i \vec{k} \cdot \vec{x}}$ where $\vec{x}=b \hat{e}_{y}$

Evaluate E_{x}

$=\frac{2 i z e}{\epsilon(2 \pi)^{3 / 2}} \int \mathrm{dk}_{1} \mathrm{dk}_{2} \mathrm{dk}_{3} e^{i k_{2} b}$

$$
\therefore\left[\frac{\omega \epsilon v}{c^{2}}-k_{1}\right] \frac{\delta\left(\omega-v k_{1}\right)}{k^{2}-\epsilon \omega^{2} / c^{2}}
$$

$=\frac{2 \text { ize }}{\epsilon(2 \pi)^{3 / 2}} \int \mathrm{dk}_{2} \mathrm{dk}_{3} e^{i \mathrm{k}_{2} b}$

$$
\circ\left[\frac{\omega \epsilon v}{c^{2}}-\frac{\omega}{v}\right] \frac{1}{v} \frac{1}{k^{2}-\epsilon \omega^{2} / c^{2}}
$$

denominator $=k_{2}^{2}+k_{3}^{2}+\Lambda^{2}$
where $\Lambda^{2}=\frac{\omega^{2}}{v^{2}}-\epsilon(\omega) \frac{\omega^{2}}{c^{2}}=\frac{\omega^{2}}{v^{2}}[1-\epsilon(\omega)$ β^{2}]

$$
\Lambda^{2}=\frac{\omega^{2}}{v^{2}}\left[1-\epsilon(\omega) \beta^{2}\right]
$$

The k_{3} integral $=\int \frac{\mathrm{dk}_{3}}{k_{3}^{2}+k_{2}^{2}+\Lambda^{2}}=$
$\frac{\pi}{\left(k_{2}^{2}+\Lambda^{2}\right)^{1 / 2}}$

- (**)

Assuming [M>0,
Integrate[1/(x^2+M^2), \{x, -Infinity, Infinity\}]] ∞

10

Radiated energy

Calculate the energy flux per unit length radiated out of the cylinder of radius b.
Take the limit $b \gg a$, where a is an atomic dimension, e.g., $a \sim 10 \times 10^{-8} \mathrm{~cm}$. So $b \wedge \gg 1$.
"
Series[Besselk[0, x$],\{\mathrm{x}, \infty, 2\}]$ -ame $e^{-x+0\left[\frac{1}{x}\right]^{3}}$

$$
\left(\sqrt{\frac{\pi}{2}} \sqrt{\frac{1}{x}}-\frac{1}{8} \sqrt{\frac{\pi}{2}}\left(\frac{1}{x}\right)^{3 / 2}+0\left[\frac{1}{x}\right]^{5 / 2}\right)
$$

| lecture.nov19.final.nb

$$
\begin{aligned}
& E_{x}(b, \omega) \sim i \frac{z e \omega}{c^{2}}\left[1-\frac{1}{\beta^{2} \epsilon(\omega)}\right] \frac{e^{-b \Lambda}}{\sqrt{b \Lambda}} \\
& E_{y}(b, \omega) \sim \frac{z e}{v \epsilon(\omega)} \sqrt{\frac{\Lambda}{b}} e^{-b \Lambda} \\
& B_{z}(b, \omega) \sim \beta \epsilon(\omega) E_{y}(b, \omega)
\end{aligned}
$$

Energy per unit time passing through the cylinder is

$$
\frac{d E}{d t}=\frac{c}{4 \pi} \int 2 \pi a d x \hat{e}_{\rho} \cdot(\vec{E} \times \vec{B})
$$

The integral over all x at one instant of time is the same as the integral at one point on the cylinder over all time, so replace $\mathrm{d} x$ by $\vee \mathrm{dt}$; then
$\frac{\mathrm{dE}}{\mathrm{d} x}=\frac{1}{v} \frac{c a}{2} \int v \mathrm{dt} E_{\psi}(\mathrm{t}) B_{z}(\mathrm{t})$
$=\frac{c a}{2} \operatorname{Re} \int \mathrm{~d} t E_{\psi}(\dagger) B_{z}(\dagger)^{*}$
$=c a \operatorname{Re} \int_{0}^{\infty} d \omega E_{\psi}(\omega) B_{z}(\omega)^{\star}$

22 | lecture.novi9.final.nb
Far from the path of the charge,

$$
\begin{aligned}
& c a E_{\psi} B_{z}^{*}=\frac{z^{2} e^{2}}{c^{2}}\left(-i \sqrt{\frac{\Lambda^{*}}{\Lambda}}\right) \\
& \quad \omega\left[1-\frac{1}{\beta^{2} \epsilon(\omega)}\right] e^{-b\left(\Lambda+\Lambda^{*}\right)}
\end{aligned}
$$

We need to take the real part and integrate over frequencies. If \wedge has a real part, then the exponential will be negligible, for b far from the path. That is atomic radiation, not Cherenkov radiation.
The Cherenkov radiation comes from the domain where Λ is purely imaginary.

