1

Cherenkov Radiation : The Frank-Tamm formula

Jackson, Sections 13.3.and 13.4

A charged particle moves with constant velocity in a dielectric material. Cherenkov radiation is emitted if the speed of the particle is greater than the speed of light. Now,calculate the intensity \equiv the energy flux.

 $\frac{d^2 E}{dx d\omega}$ = radiated energy per unit length of the path, per unit frequency

2 | lecture.nov19.final.nb

Parameters

charge = z e
velocity =
$$\vec{v}$$
 = v \hat{e}_x ; also β = v/c
 $\epsilon(\omega)$ = permittivity
n(ω) = $\sqrt{\epsilon(\omega)}$ = index of refraction.

The Frank-Tamm formula (in Gaussian units)

$$\frac{d^{2} E}{dx d\omega} = \frac{z^{2} e^{2}}{c^{2}} \omega \left(1 - \frac{1}{\beta^{2} \epsilon(\omega)}\right) ^{\alpha}$$
$$= \Theta[\epsilon(\omega) \beta^{2} - 1]$$
(13.48)

Check the units.

Derivation

We start Maxwell's equations, for these sources

 $\rho(\vec{x},t) = ze \ \delta^{3}(\vec{x} - \vec{v} \ t)$ $\vec{J}(\vec{x},t) = \vec{v} \ \rho(\vec{x},t)$ But it will be necessary to write Maxwell's equations in *reciprocal space* (\vec{k} and ω). $D(\vec{x},t) \neq \epsilon E(\vec{x},t); \ /important/ ; but$ rather $D(\vec{k},\omega) = \epsilon(\omega) \ \vec{E}(\vec{k},\omega).$ 4 lecture.nov19.final.nb

lecture.nov19.final.nb 3

• Fourier transform conventions, $F(\vec{x},t) = \int \frac{d^3 k}{(2\pi)^{3/2}} \int \frac{d\omega}{(2\pi)^{1/2}} \tilde{F}(\vec{k},\omega) \exp\{i(\vec{k}\cdot\vec{x}-\omega)\}$ To make the equations look simpler, drop the 'tilde' (~). This can be confusing, because F could mean $F(\vec{x},t)$ or $F(\vec{k},\omega)$. We need to keep in mind, are we talking about spacetime (\vec{x} and time) or reciprocal space and frequency (\vec{k} and ω).

$\begin{array}{l} \underline{\mathsf{Example}} \\ \nabla \cdot \vec{D} = 4\pi \,\rho \, \mathrm{means} \, \nabla \cdot \vec{D}(\vec{x}, \mathsf{t}) = 4\pi \,\rho(\vec{x}, \mathsf{t}) \\ & \text{space and time} \\ \mathbf{i} \, \vec{k} \cdot \vec{D} = 4\pi \,\rho \, \mathrm{means} \, \mathbf{i} \, \vec{k} \cdot \vec{D}(\vec{k}, \omega) = 4\pi \,\rho(\\ \vec{k}, \omega) \\ & \text{reciprocal space and frequency} \\ & \text{In other words the second equation relates} \\ & \vec{D} \, \text{ and } \tilde{\rho} \, \text{ but dropping the tilde.} \end{array}$

3
• Calculate
$$\rho(\vec{k}, \omega)$$

= $\frac{1}{(2\pi)^2} \int d^3 x \int dt ze \, \delta^3(\vec{x} - \vec{v} t) \exp\{-i(\vec{k} \cdot \vec{x} - \omega t)\}$
= $\frac{ze}{(2\pi)^2} \int dt \exp\{-i(\vec{k} \cdot \vec{v} t - \omega t)\}$
= $\frac{ze}{2\pi} \delta(\omega - \vec{k} \cdot \vec{v})$
• $\vec{J}(\vec{k}, \omega) = \vec{v} \rho(\vec{k}, \omega)$ because \vec{v} is

constant.

9.final.nb | 5 | 6

6 | lecture.nov19.final.nb

Maxwell's equations, in spacetime \rightarrow \rightarrow \rightarrow

$$\nabla \cdot \vec{B} = 0$$
 and $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{c \ \partial t}$

homogeneous equations

$$\nabla \cdot \vec{D} = 4\pi\rho \text{ and } \nabla \times \vec{H} = \frac{4\pi}{c}\vec{J} + \frac{\partial \vec{D}}{\partial t}$$

inhomogeneous equations

lecture.nov19.final.nb | 7

8 | lecture.nov19.final.nb

The Potentials

$$\nabla \cdot \vec{B} = 0 \implies \text{write } \vec{B} = \nabla \times \vec{A};$$

$$\nabla \times \vec{E} = -\partial \vec{B} / c\partial t = -\nabla \times (\partial \vec{A} / c\partial t)$$

$$\implies \vec{E} + \frac{\partial \vec{A}}{c\partial t} = -\nabla \Phi$$

In reciprocal space and frequency, $\vec{B} = i \vec{k} \times \vec{A}$ $\vec{E} = -i \vec{k} \Phi + \frac{i\omega}{c} \vec{A}$

4

Maxwell's equations, in reciprocal space and frequency

 $\vec{k} \cdot \vec{B} = 0$ and $\vec{k} \times \vec{E} = \frac{i\omega}{c} \vec{B}$

homogeneous equations

$$\vec{k} \cdot \vec{D} = 4\pi\rho$$
 and $\vec{k} \times \vec{H} = \frac{4\pi}{c}\vec{J} - \frac{i\omega}{c}\vec{D}$

inhomogeneous equations

where $\overrightarrow{D} = \epsilon(\omega) \overrightarrow{E}$ and $\overrightarrow{H} = \overrightarrow{B}/\mu(\omega)$. For a dielectric, we'll just set $\mu(\omega) = 1$; i.e., $\overrightarrow{H} = \overrightarrow{B}$.

5

Jackson's derivation of the Frank-Tamm equations

Jackson starts here - Eq. (13.22)

$$\begin{bmatrix} k^2 - \frac{\omega^2}{c^2} \,\epsilon(\omega) \end{bmatrix} \Phi(\mathbf{k}, \,\omega) = \frac{4\pi}{\epsilon(\omega)} \,\rho(\mathbf{k}, \,\omega)$$
$$\begin{bmatrix} k^2 - \frac{\omega^2}{c^2} \,\epsilon(\omega) \end{bmatrix} \mathbf{A}(\mathbf{k}, \,\omega) = \frac{4\pi}{c} \,\mathbf{J}(\mathbf{k}, \,\omega)$$

These are equations in reciprocal space, and are not obvious. So we'll go back a step and derive Eq. (13.22) 10 lecture.nov19.final.nb

6

lecture.nov19.final.nb | 9

To derive (13.22) we need the inhomogeneous equations. First, $i \vec{k} \cdot \vec{D} = 4\pi\rho$ and $\vec{D} = \epsilon(\omega)\vec{E}$ $i \vec{k} \cdot \epsilon [-i \vec{k} \Phi + \frac{i\omega}{c} \vec{A}] = 4\pi\rho$ $\epsilon k^2 \Phi = 4\pi\rho + \epsilon \frac{\omega}{c} \vec{k} \cdot \vec{A}$ $\epsilon [k^2 - \frac{\omega^2 \epsilon}{c^2}] \Phi = 4\pi\rho + \epsilon \frac{\omega}{c} \{ \vec{k} \cdot \vec{A} - \epsilon \frac{\omega}{c} \Phi \}$

lecture.nov19.final.nb 11
Second,
$i \vec{k} \times \vec{B} = \frac{4\pi}{c} \vec{J} - \frac{i\omega}{c} \vec{D}$
$i \overrightarrow{k} \times (i \overrightarrow{k} \times \overrightarrow{A}) = \frac{4\pi}{c} \overrightarrow{J} - \frac{i\omega}{c} \epsilon (-i \overrightarrow{k} \Phi + \frac{i\omega}{c} \overrightarrow{A})$
$-\vec{k}(\vec{k}\cdot\vec{A}) + k^{2}\vec{A} = \frac{4\pi}{c}\vec{J} - \epsilon \frac{\omega}{c}\vec{k} \Phi + \frac{\omega^{2}}{c^{2}}\epsilon\vec{A}$
$[k^{2} - \frac{\omega^{2}\epsilon}{c^{2}}]\vec{A} = \frac{4\pi}{c}\vec{J} + \vec{k}(\vec{k}\cdot\vec{A}) - \epsilon \frac{\omega}{c}\vec{k} \Phi$
$[k^{2} - \frac{\omega^{2} \epsilon}{c^{2}}] \overrightarrow{A} = \frac{4\pi}{c} \overrightarrow{J} + \overrightarrow{k} \{ \overrightarrow{k} \cdot \overrightarrow{A} - \epsilon \frac{\omega}{c} \Phi \}$

7 So, make this <u>gauge choice</u> $\vec{k} \cdot \vec{A} - \epsilon \stackrel{\omega}{c} \Phi = 0$ Exercise: write the gauge choice in spacetime \Rightarrow we have these wave equations $[k^{2} - \frac{\omega^{2} \epsilon}{c^{2}}] \Phi = \frac{4\pi}{\epsilon} \rho$ $[k^{2} - \frac{\omega^{2} \epsilon}{c^{2}}] \vec{A} = \frac{4\pi}{c} \vec{J}$ (13.22)

The potentials

$$\Phi = \frac{4\pi}{\epsilon} \frac{\rho}{\left[k^2 - \frac{\omega^2 \epsilon}{c^2}\right]} = \frac{2 ze}{\epsilon} \frac{\delta(\omega - k \cdot v)}{\left[k^2 - \frac{\omega^2 \epsilon}{c^2}\right]}$$

$$\vec{A} = \frac{4\pi}{c} \frac{\vec{J}}{\left[k^2 - \frac{\omega^2 \epsilon}{c^2}\right]} = \frac{4\pi}{c} \frac{\vec{v}\rho}{\left[k^2 - \frac{\omega^2 \epsilon}{c^2}\right]} = \frac{\vec{v}}{c} \epsilon \Phi$$

The fields

$$\vec{E} = -i \vec{k} \Phi + \frac{i\omega}{c} \vec{A}$$

$$\vec{E}(\vec{k},\omega) = i \left[-\vec{k} + \frac{\omega \epsilon(\omega)}{c} \frac{\vec{v}}{c} \right] \Phi(\vec{k},\omega)$$

$$\vec{B}(\vec{k},\omega) = i \epsilon(\omega) \vec{k} \times \frac{\vec{v}}{c} \Phi(\vec{k},\omega)$$

14 | lecture.nov19.final.nb

8

The radiated energy

Draw a picture.

Let
$$\vec{v} = v \hat{e}_x$$

Consider points on the cylinder of radius b around the x axis. Say $\vec{x} = b \hat{e}_y$ is the observation point. By cylindrical symmetry, the power is independent of azimuthal angle ϕ .

There the electric field, still in frequency space, is

 $\vec{E}(b\hat{e}_{y}, \omega) = \int \frac{d^{3}k}{(2\pi)^{3/2}} \vec{E}(\vec{k}, \omega) e^{i\vec{k}\cdot\vec{x}}$ where $\vec{x} = b\hat{e}_{y}$

9
The k2 integral

$$E_{x} = \frac{2ize}{\epsilon(2\pi)^{3/2}} \pi \left[\frac{\omega \in v}{c^{2}} - \frac{\omega}{v} \right] \frac{1}{v} \quad \alpha = \int dk_{2} e^{i k_{2} b} \frac{1}{(k_{2}^{2} + \Lambda^{2})^{1/2}}$$
(**)
Assuming[$\mu > 0$,
Integrate[
 $Cos[\xi] / (\xi^{2} + \mu^{2})^{(1/2)}, (\xi, -\infty, \infty)]$]
2 BesselK[0, μ]
modified Bessel function

18 lecture.nov19.final.nb

$$E_{x} = \frac{2ize}{\epsilon(2\pi)^{3/2}} \pi \left[\frac{\omega \epsilon v}{c^{2}} - \frac{\omega}{v}\right] \frac{1}{v} 2 K_{0}(b\Lambda)$$

$$E_{x} = -\frac{ize\omega}{\epsilon v^{2}} \left(\frac{2}{\pi}\right)^{1/2} \left[1 - \frac{\epsilon v^{2}}{c^{2}}\right] K_{0}(b\Lambda)$$

$$E_{x}(be_{y}, \omega) = -\frac{ize\omega}{v^{2}} \left(\frac{2}{\pi}\right)^{1/2} \left[\frac{1}{\epsilon(\omega)} - \beta^{2}\right]$$

$$K_{0}(b\Lambda)$$

Other components (given by Jackson)

$$E_{y}(be_{y}, \omega) = \frac{ze}{v} \left(\frac{2}{\pi}\right)^{1/2} \frac{\Lambda}{\epsilon(\omega)} K_{1}(b\Lambda)$$

$$B_{z}(b e_{y}, \omega) = \epsilon(\omega) \beta E_{y}(b e_{y}, \omega)$$

Draw a picture.

10

Radiated energy

Calculate the energy flux per unit length radiated out of the cylinder of radius b. Take the limit $b \gg a$, where a is an atomic dimension , e.g., $a \sim 10 \times 10^{-8}$ cm.

So b $\Lambda \gg 1$.

```
In[10]:= ( * * )
```

Series[BesselK[0, x], {x, ∞ , 2}] $_{\text{outp} \in \mathbb{C}^{-X+0}\left[\frac{1}{x}\right]^3}$

$$\left(\sqrt{\frac{\pi}{2}} \sqrt{\frac{1}{x}} - \frac{1}{8} \sqrt{\frac{\pi}{2}} \left(\frac{1}{x}\right)^{3/2} + 0\left[\frac{1}{x}\right]^{5/2}\right)$$

20 lecture.nov19.final.nb

lecture.nov19.final.nb | 19

$$\begin{split} E_{x}(\mathsf{b},\omega) &\sim \mathsf{i} \; \frac{z e \omega}{c^{2}} \left[1 - \frac{1}{\beta^{2} \epsilon(\omega)} \right] \frac{e^{-\mathsf{b} \wedge}}{\sqrt{\mathsf{b} \wedge}} \\ E_{y}(\mathsf{b},\omega) &\sim \frac{z e}{\mathsf{v} \epsilon(\omega)} \sqrt{\frac{\Lambda}{b}} e^{-\mathsf{b} \wedge} \\ B_{z}(\mathsf{b},\omega) &\sim \beta \epsilon(\omega) \; E_{y}(\mathsf{b},\omega) \end{split}$$

Energy per unit time passing through the cylinder is

$$\frac{dE}{dt} = \frac{c}{4\pi} \int 2\pi a \, dx \, \hat{e}_{\rho} \cdot (\vec{E} \times \vec{B})$$

lecture.nov19.final.nb | 21

The integral over all x at one instant of time is the same as the integral at one point on the cylinder over all time, so replace dx by v dt; then

$$\frac{dE}{dx} = \frac{1}{v} \frac{ca}{2} \int v \, dt \, E_{\psi}(t) \, B_z(t)$$

- $= \frac{ca}{2} \operatorname{Re} \int \mathrm{dt} E_{\psi}(t) B_{z}(t)^{*}$
- = ca Re $\int_0^\infty d\omega E_{\psi}(\omega) B_z(\omega)^*$

22 | lecture.nov19.final.nb

Far from the path of the charge,

$$\operatorname{ca} E_{\psi} B_{z}^{*} = \frac{z^{2} e^{2}}{c^{2}} \left(-i \sqrt{\frac{\Lambda^{*}}{\Lambda}} \right)$$
$$\circ \omega \left[1 - \frac{1}{\beta^{2} \epsilon(\omega)} \right] e^{-b (\Lambda + \Lambda^{*})}$$

We need to take the real part and integrate over frequencies. If Λ has a real part, then the exponential will be negligible, for b far from the path. That is atomic radiation, not Cherenkov radiation.

The Cherenkov radiation comes from the domain where Λ is purely imaginary.

lecture.nov19.final.nb | 23

24 lecture.nov19.final.nb

11

The domain of purely imaginary Λ = Cherenkov radiation

$$\Lambda^2 = \frac{\omega^2}{v^2} \left[1 - \epsilon(\omega) \beta^2 \right]$$

Suppose $\epsilon(\omega)$ is real (i.e., there is no absorption) and $\beta^2 \epsilon(\omega) > 1$.

That is, $v > c/\sqrt{\epsilon} = c/n =$ the speed of light.

Then Λ is purely imaginary.

This is the Cherenkov radiation.

$$-i\sqrt{\Lambda^*/\Lambda} = 1$$

$$\blacksquare exp\{-b*(\Lambda+\Lambda^*)\}=1$$

The domain of integration is where $\epsilon(\omega) > 1/\beta^2$. The integrand is $d^2E/(dx d\omega)$. This is the Frank-Tamm formula.