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Cherenkov Radiation : The Frank-Tamm 
formula

Jackson, Sections 13.3.and 13.4
A charged particle moves with constant 
velocity in a dielectric material. Cherenkov 
radiation is emitted if the speed of the par-
ticle is greater than the speed of light. 
Now,calculate the intensity  ≡  the energy 
flux.
d 2 E

dx dω  = radiated energy per unit length of 

the path, per unit frequency

Parameters
charge = z e
velocity = v = v e$x ; also β = v/c
ϵ(ω) = permittivity

n(ω) = ϵ(ω)  = index of refraction.

The Frank-Tamm formula (in Gaussian 
units)

d 2 E
dx dω  = z2 e2

c2   ω  ( 1 – 1
β2 ϵ(ω)

 )  ▫

          ▫     Θ[ ϵ(ω) β2 – 1 ]
(13.48)

Check the units.
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Derivation
▮ We start Maxwell’s equations, for these 
sources
ρ( x ,t) = ze δ3 x – v t 

J ( x ,t) = v ρ( x ,t)
But it will be necessary to write Maxwell’s 

equations in reciprocal space ( k  and ω).
D(x ,t)  ≠ ϵ E(x ,t);    /important/     ; but 

rather D(k ,ω)  = ϵ(ω)  E (k ,ω).
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▮ Fourier transform conventions,

F(x ,t) = ∫   d 3 k
(2π)3/2

 ∫   dω
(2π)1/2

  F
˜

( k ,ω)  exp{ i 

( k • x  – ω t ) }
To make the equations look simpler, drop the ‘tilde’ 
(~). This can be confusing, because F could mean 

F (x,t) or F (k ,ω). We need to keep in mind, are we 
talking about spacetime (x and time) or reciprocal 

space and frequency (k  and ω).

Example
∇• D  = 4π ρ means ∇• D (x ,t) = 4π ρ(x ,t)

space and time

i k •D  = 4π ρ means i k •D ( k ,ω) = 4π ρ( 

k ,ω)
reciprocal space and frequency

In other words the second equation relates 

D
˜

 and ρ̃  but dropping the tilde.
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▮ Calculate ρ(k ,ω)

= 1
(2π)2

 ∫ d 3 x ∫ dt  ze δ3 x – v t   exp{ – i ( 

k • x  – ω t ) }

= ze
(2π)2

 ∫ dt exp{ – i ( k • v t – ω t ) }

 = ze
2π  δ( ω – k • v )

▮ J ( k ,ω) =  v ρ( k , ω)  because v is 

constant.
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Maxwell’s equations, in spacetime

∇ • B  = 0  and ∇× E  = –  ∂B
c ∂t

homogeneous equations

∇•D  = 4π ρ  and  ∇× H  = 4π
c  J + ∂D

c ∂t

inhomogeneous equations
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Maxwell’s equations, in reciprocal 
space and frequency

i k  • B  = 0  and i k  × E  = iω
c  B

homogeneous equations

i k • D  = 4π ρ  and  i k × H  = 4π
c  J  – iω

c  D

inhomogeneous equations

where D  = ϵ(ω) E  and H  = B /μ(ω).
For a dielectric, we’ll just set μ(ω) = 1; i.e., 
H  = B .
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The Potentials
∇• B  = 0 ⟹ write B  = ∇× A ;

∇× E  = – ∂ B  /c∂t = – ∇× (∂A  /c∂t)

    ⟹  E  + ∂A
c ∂t  = – ∇Φ

In reciprocal space and frequency,

B  = i k  × A

E  = – i k  Φ + iω
c  A
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Jackson’s derivation of the Frank-
Tamm equations
Jackson starts here — Eq. (13.22)

These are equations in reciprocal space, 
and are not obvious. So we’ll go back a step 
and derive Eq. (13.22)
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To derive (13.22) we need the inhomoge-
neous equations. First,
i k • D  = 4π ρ   and   D  = ϵ(ω) E

i k • ϵ [ – i k  Φ + iω
c  A  ] = 4π ρ

ϵ k 2 Φ  =  4π ρ  + ϵ ωc  k •A  

ϵ [ k 2 – ω
2 ϵ

c2  ] Φ =  4π ρ  + ϵ ωc  { k •A  – ϵ ωc Φ }
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Second,
 i k × B  = 4π

c  J  – iω
c  D

i k  × ( i k × A  ) =  4π
c  J  – iω

c  ϵ (  – i k  Φ + iω
c  A  )

– k  ( k •A  ) + k 2 A   = 4π
c  J  – ϵ ωc k  Φ  + ω

2

c2 ϵ A  

[ k 2 – ω
2 ϵ

c2  ] A  = 4π
c  J  +  k ( k  • A ) – ϵ ωc  k  Φ 

[ k 2 – ω
2 ϵ

c2  ] A  = 4π
c  J  + k  { k • A  – ϵ ωc  Φ } 

lecture.nov19.final.nb     11

7

So, make this gauge choice

k  • A  – ϵ ωc  Φ = 0

Exercise: write the gauge choice
in spacetime

⟹ we have these wave equations

[ k 2 – ω
2 ϵ

c2  ] Φ  =  4π
ϵ  ρ

[ k 2 – ω
2 ϵ

c2  ] A   = 4π
c  J

(13.22)
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The potentials

Φ = 4π
ϵ  ρ

k 2 –ω2 ϵ
c2 

 = 2 ze
ϵ  

δ(ω–k•v)
k 2 –ω2 ϵ

c2 

A  = 4π
c  J

k 2 –ω2 ϵ
c2 

 = 4π
c  

v ρ
k 2 –ω2 ϵ

c2 
  = v

c  ϵ Φ

The fields
E   = –i k  Φ + iω

c  A

E (k ,ω) = i [ – k   + 
ωϵ(ω)

c  v

c  ] Φ( k ,ω)

B (k ,ω) = i ϵ(ω) k  × v

c  Φ( k ,ω)
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The radiated energy
Draw a picture.
Let v = v e$x .
Consider points on the cylinder of radius b 
around the x axis. Say  x  = b e$y  is the 
observation point. By cylindrical symmetry, 
the power is independent of azimuthal 
angle ϕ .
There the electric field, still in frequency 
space, is

E ( be$y , ω) = ∫  d 3 k
(2π)3/2

 E ( k ,ω) e i k • x  where 

x  = b e$y
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Evaluate Ex

= 2 ize
ϵ (2π)3/2

 ∫  dk1 dk2 dk3 e i k2 b  

          ▫[ ωϵ v
c2 - k1 ] δ(ω – vk1)

k 2-ϵ ω2c2

=  2 ize
ϵ (2π)3/2

 ∫ dk2 dk3 e i k2 b  

          ▫[ ωϵ v
c2 - ωv  ] 1

v  1
k 2-ϵ ω2c2

.

denominator = k2
2 + k3

2 + Λ2

where Λ2 = ω
2

v2  – ϵ(ω) ω
2

c2  =  ω
2

v2  [ 1 – ϵ(ω) 

β2 ]

Λ2 =  ω
2

v2  [ 1 – ϵ(ω) β2 ]
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.

The k3 integral = ∫  dk3

k3
2 + k2

2 +Λ2  = 

π
k2

2+Λ21/2

In[3]:= (**)

Assuming[M > 0,

Integrate[1 / (x^2 + M^2),

{x, -Infinity, Infinity}]]
Out[3]=

π
M
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The k2 integral

Ex =  2 ize
ϵ (2π)3/2

 π  [ ωϵ v
c2 - ωv  ] 1

v  ▫

          ▫ ∫ dk2 e i k2 b 1
 k2

2+Λ21/2

In[8]:= (**)

Assuming[μ > 0,

Integrate[

Cos[ξ] / (ξ^2 + μ^2)^(1 / 2),

{ξ, -∞, ∞}]]
Out[8]= 2 BesselK[0, μ]

modified Bessel function
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Ex =  2 i ze
ϵ (2π)3/2

 π  [ ωϵ v
c2 - ωv  ] 1

v  2 K0(bΛ) 

Ex = – i zeω
ϵ v2   2

π 
1/2  [  1 –  ϵ v2

c2  ]  K0(bΛ) 

Exbey, ω = – i zeω
v2   2

π
1/2  [  1

ϵ(ω)  –  β2 ]  

K0( bΛ) 

Other components (given by Jackson)

Eybey, ω =  ze
v   2

π
1/2 Λ

ϵ(ω)   K1( bΛ) 

Bz(b ey , ω) = ϵ(ω) β Ey(b ey , ω)

Draw a picture.
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Radiated energy
Calculate the energy flux per unit length 
radiated out of the cylinder of radius b.
Take  the limit b ≫ a, where a is an atomic 
dimension , e.g., a ~ 10 ⨯ 10–8 cm.
So b Λ  ≫ 1.

In[10]:= (**)

Series[BesselK[0, x], {x, ∞, 2}]

Out[10]= ⅇ-x+O 1
x

3

π
2

1
x

- 1
8

π
2

 1
x

3/2

+ O 1
x

5/2
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Ex(b,ω) ~ i zeω
c2  [ 1 – 1

β2 ϵ(ω)
 ] e–bΛ

bΛ

Ey(b,ω) ~  ze
vϵ(ω)  Λ

b e–bΛ

Bz(b,ω) ~ β ϵ(ω) Ey(b,ω)

Energy per unit time passing through the 
cylinder is
dE
dt  = c

4π  ∫  2π a  dx  e$ρ • ( E  × B )
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The integral over all x at one instant of 
time is the same as the integral at one 
point on the cylinder over all time, so 
replace dx by v dt; then
dE
dx  = 1

v  ca
2  ∫  v dt Eψ(t) Bz(t)

= ca
2  Re ∫  dt Eψ(t) Bz(t)*

= ca Re ∫ 0
∞ dω Eψ(ω) Bz(ω)*
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Far from the path of the charge,

ca Eψ Bz* = z2 e2

c2   –i Λ*

Λ  

      ▫ω [ 1 – 1
β2 ϵ(ω)

 ] e – b (Λ+Λ*)

We need to take the real part and inte-
grate over frequencies. If Λ has a real 
part, then the exponential will be negligible, 
for b far from the path. That is atomic radi-
ation, not Cherenkov radiation.
The Cherenkov radiation comes from the 
domain where Λ is purely  imaginary.
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The domain of purely imaginary Λ = 
Cherenkov radiation

Λ2 =  ω
2

v2  [ 1 – ϵ(ω) β2 ]

Suppose ϵ(ω) is real (i.e., there is no absorp-
tion) and β2ϵ(ω) > 1.
That is, v > c/ ϵ  = c/n = the speed of light.
Then Λ is purely imaginary.
This is the Cherenkov radiation.
▮    –i Λ* /Λ  = 1
▮   exp {-b * (Λ +Λ*)} = 1
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▮

 dE
dx C .rad. =

 z2 e2

c2  ∫C .rad.  dω ω 1 – 1
β2 ϵ(ω)

▮

The domain of integration is where ϵ(ω) > 
1  β2.
The integrand is d 2E/(dx dω).
This is the Frank-Tamm formula.
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