Cherenkov Radiation : The Frank-Tamm
formula

Jackson, Sections 13.3.and 13.4

A charged particle moves with constant
velocity in a dielectric material. Cherenkov
radiation is emitted if the speed of the par-
ticle is greater than the speed of light.
Now,calculate the intensity = the energy
flux.
d’E
dx dw
the path, per unit frequency

= radiated energy per unit length of

Parameters
charge=ze

velocity = V=vé, alsoB=v/c
e(w) = permittivity

n(w) = \/ €(w) = index of refraction.
The Frank-Tamm formula (in Gaussian

units)
d’E _ Z2é? 1 ]
dxdw = 2 Y (1 3 e(w) )

Of e(w) B7-1]
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Derivation
B We start Maxwell's equations, for these
sources
o(X1) = ze 63(}’-7 T)
F(X1)=V p( %)
But it will be necessary to write Maxwell's
equations in reciprocal space ( /? and w).
D(X.1) * € E(X,1): but
rather D(/;),w) = e(w) E_-')(/;),w).
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B Fourier transform conventions,
-~ =
F(x1)= [ (dak dw_ £k w) exp(i

2 7T)3/2 (2 7T)1/2

9
(keX-wt)})
To make the equations look simpler, drop the 'tilde’
(~). This can be confusing, because F could mean

F()_(),‘r) or F(/?,w). We need to keep in mind, are we
talking about spacetime (x and time) or reciprocal

space and frequency (l;) and w).

Example
g 2o -
Ve D =41 pmeans Ve D(x 1) = 411 p(X 1)

- - - > -
i keD =4mrpmeansi k*D( k,w)=4rrp(
%
k ,w)
In other words the second equation relates

=2
D and p but dropping the ftilde.
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B Calculate p(/?,w)
[ d® x [ dt 26(53( T/)T) exp{ - i (

(2 F
k-}’-m)}

= [dtexp{-i(k*Vi-wt))

_ Ze .
oy o( w- k v)

- - - -
| J'(k,w)z v p( k, w) because v is

constant.

Maxwell's equations, in spacetime

- — 5B
VeB=0 andVx £ = - 2=
c ot

VeD = 47p and Vx H = A T+

caf
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The Potentials
- - -
Ve B=0= write B =Vx A;

- - -
Vx E =-0 B /cdt=-Vx (0A /cot)

Maxwell's equations, in reciprocal
space and frequency

ik-B=0andikxE=2Z -y

e T = E+ 24 =--VO
N 5 RN In reciprocal space and frequency,
ik+D=4rmpand ikxH=2LJ-2p CikxA

%
B
%
E

g iw 7
-ik O+ — A
- - - - C
where D = €(w) E and H = B/u(w).

For a dielectric, we'll just set p(w) =1; i.e.,
o

H=B.
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To derive (13.22) we need the inhomoge-
heous equations. First,

- o — -
ik*D=4rmp and D = €(w) E

Jackson's derivation of the Frank-
Tamm equations
Jackson starts here — Eq. (13.22)

- - e
~ ~ ik-e[—ik¢+%A]:4np
, o _ _ 4n
K=z @) | Pk o) =0 pk @) KDz dmp el KA
[ 2 y
y) B 4 _ Wle = +c ¥ _)._)- w
K= %5 e(0) |Alk @) = =7 Ik, 0) €LKE- 4 10= drp ve P {k A€ 20)

These are equations in reciprocal space,
and are not obvious. So we'll go back a step
and derive Eq. (13.22)
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Second,
l_)xE:“—"?-'—B

c c
.7 .22 4 F_ i iw
ik x(ikxA)= TJ-?E(-IkCD+?A)
“K(KA)+k?A =4 F-e2Lk o+ LecA
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So, make this gauge choice
_)

K+A-c2d=0

= we have these wave equations

(K- <10 = )
(K- 4214 =42 7
¢ C




The potentials

oo A P 2ze O(w-kev)
- (2 _wle]l € 2 _wle
€ [w-e Lahral
- R X
Z_4rr J 4 VP AN
T -k2_£26'_ C [kz-if] C
L c c
The fields
- - -
E -|kd>+%/1
2> 5 wWEw) z -
Ekw=i[-k + —— — 1P k,w)
c c
_)
B

(k.w) =i €w) Kk x f O( K w)
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The radiated energy

Draw a picture.

Letv=veé,.

Consider points on the cylinder of radius b
around the x axis. Say X = b e, is the

observation point. By cylindrical symmetry,
the power is independent of azimuthal
angle ¢ .

There the electric field, still in frequency
space is

E(bey,w) f d33,2 E(k w)e’;?wher'e

_)
—bey




Evaluate E,

- ﬁ [ dky dk, dks &' %2 P
L WEV O(w - vki)
[ c? kil k?-€ w?/c?
5 .
- 6(2'—;‘;'3,2fdk2dk3e'k2b
o wev W 1 1 1
c? v S v kP-ew?/c?

denominator = kI + ki + \°
2 2 2
w W’ w
where A2 = 7" e(w) 27 2 [1-e(w)

8]

o ) dks

The kj integral = [ Kt KN
It

(k2+ N2)?

o (k%)

Assuming([M > 0O,
Integrate[l/ (x*"2+M72),
{x, =Infinity, Infinity}]]

A
M
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The k2 integral

E, = 2ize [we'v g]l :

T
€ (2 1)3/2 c? v S v

o [ dk, e ket 1

( /(22+/\2)1/2

o (k%)

\\\\\\

Assuming[u > 0,
Integrate]
Cos[&€]/ (§M2+ut2)N(1/2),
{§y -, ©}]]
2 BesselK[0, u]
modified Bessel function

_ _2ize wev w1
Ex = € (2 )32 m c? y 1y 2 Kb
__[zew p\1e e
Ex = 2 (=) 11 = 1 Ko(bA)
[Ze W 1/2 1
E.(be,, w) = - 7 ()" I () B ]
Ko( bA)

Other components (given by Jackson)

E/(be,, w) = 22 (2)" $ Ki( bA)

B,(be, 6 w)=€ew)BEe,, w)

Draw a picture.
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Radiated energy
Calculate the energy flux per unit length
radiated out of the cylinder of radius b.
Take the limit b > a, where a is an atomic
dimension , e.g.,a~ 10 x 107® cm.
SobA > 1.

o (Fe*)
Ser'ies[Besse'LK[O X], {X, 0, 2}]

7X+O
3/2 1 ]5/2
X

X | =
N[

1 ] e—bA

. UJ
x(bw) [1' \/b_/\

c? 5% e(w)

E(b.w) ~ ( ” //\ )

B,(b,w) ~ B €(w) E,(b,w)
Energy per unit time passing through the

cylinder is
de _ ¢ -2
d,r-4n12nadx é,*(E x B)




The integral over all x at one instant of
time is the same as the integral at one
point on the cylinder over all fime, so
replace dx by v dt; then

dE _ 1l ca
= S vdt B B.(1)
= S Re [ df £y(1) B,(1)*

= caRe [ dw Ey(w) By (w)*

Far from the path of the charge,

2 2 R
ca E, B,* = _zze (-/’ AW
] 1 - b (A+AY)
wll Bze(w)]e

We need to take the real part and inte-
grate over frequencies. If A\ has a real

part, then the exponential will be negligible,
for b far from the path. That is atomic radi-
ation, not Cherenkov radiation.

The Cherenkov radiation comes from the
domain where A is purely imaginary.
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The domain of purely imaginary A =
Cherenkov radiation
2

AP= 25 [1-ew) B ]

Suppose €(w) is real (i.e., there is no absorp-

tion) and BPe(w) > 1.

That is, v > ¢/v/ € = ¢/n = the speed of light.

Then A is purely imaginary.

This is the Cherenkov radiation.

B -iVAT/A =1

B exp{-b*x(AN+AN*)} =1

() red. -
dx/C.rad. =
2% e? 1

c? fc.rad. dw w ( 1- ,32 e(w) )

The domain of integration is where e(w) >
1/p2.

The integrand is d°E/(dx dw).

This is the Frank-Tamm formula.




