1126.brems1.nb | 3

2 | 1126.brems1.nb

Bremsstrahlung introduction

Suppose a particle with charge e is moving in free space, initially with constant velocity, $\vec{v} = v \hat{e}_x$.

At time t = 0, it reaches the origin.

But for t > 0 there is a braking force, and the particle rapidly decelerates to rest. Calculate the radiation that is emitted. These pictures illustrate what happens. ■ For t < 0, the electric field lines are shown in blue, in a volume of space centered at the origin.

■ For t = 0, the electric field lines are shown in blue, in the same volume.

[[1772]= pic["sh1b.png"]

1126.brems1.nb | 5 ■ For t > 0, the electric field lines are shown in blue, in the same volume, *if there* is no braking In[1773]= pic["sh1c.png"] Out[1773]= -10 -5

6 | 1126.brems1.nb

■ For $t \rightarrow \infty$, the electric field lines are shown in red, in the same volume, *if the braking has occurred*.

 outprze pic["shld.png"]

 0
 10

 0
 5

 0
 -10

 -10
 -5

 -10
 -10

For t > 0, the electric field lines are shown in blue and red, in the same volume, a short time after the particle comes to rest. The information that the particle has come to rest travels at the speed of light. For the time shown, c t = the radius. For r > ct. the information hasn't yet reached to field.

8 1126.brems1.nb	1126.brems1.nb 9
The outgoing sphere is the radiation called	
Bremsstrahlung.	

10 | 1126.brems1.nb

History of the science of Bremsstrahlung DISCOVERY

•X-rays [Roentgen, 1895] ; using a "Crookes tube";

•There exists a line spectrum and a continuum; see Wikipedia; Rhodium cathode; Klines of Rhodium;

•Sommerfeld named the continuous spectrum "Bremsstrahlung"; bremsen = to brake; strahlung = radiation ;

•Coincidence measurements of electrons and photons (Nakel, 1966)

THEORY

- Classical and semi-classical calculations
- •Kramers [1923]
- •Wentzel {1923]
- Quantum mechanical calculations
- •Sommerfeld [1931] nonrelativistic electrons and quantum mechanical; QED= the theory of the photon!
- •Bethe and Heitler [1934] using the Dirac equation
- •Bethe and Maxion [1954] using coulomb waves function for electron scattering
- •Tseng and Pratt [1971] complete numerical (computer) calculations

12 | 1126.brems1.nb

Jackson, Section 15.1: Radiation Emitted during Collisions

In a collision there is acceleration and therefore radiation. We'll assume that the projectile is much lighter than the target, so we'll treat the collision as a particle moving in a fixed potential.

There will be some approximations which must be justified.

Recall the classical theory of radiation by a nonrelativistic particle

The intensity per unit solid angle and per unit frequency interval is

In[1777]≈ eq["15.1.png"]

$$\frac{dI(\omega)}{d\Omega} = \frac{e^2}{4\pi^2 c} \left| \int \mathbf{n} \times (\mathbf{n} \times \dot{\boldsymbol{\beta}}) e^{i\omega \left(t - \frac{\mathbf{n} \cdot \mathbf{r}(t)}{c}\right)} dt \right|^2$$

15.1

Out[1777]=

We may approximate $t - \hat{n} \cdot \vec{r} / c \sim t - v t / c \approx t$ because $v / c \ll 1$; this is called the "dipole approximation".

Outf17

15.2

$$\frac{dI(\omega)}{d\Omega} = \frac{e^2}{4\pi^2 c} \left| \int \mathbf{n} \times (\mathbf{n} \times \dot{\boldsymbol{\beta}}) e^{i\omega t} dt \right|^2$$

Now consider the collision process. There is a finite collision time $\tau = a/v$ where a is the characteristic distance over which the force is significant. The integral over t is over an interval of order τ .

Now we can separate low frequencies ($\omega \ll 1/\tau$) and high frequencies ($\omega \gg 1/\tau$).

For low frequencies ... $\int dt \vec{\beta} \approx \Delta \vec{\beta} = \vec{\beta}_2 - \vec{\beta}_1$ = the total change of $\vec{\beta}$ in the collision; and so the radiation intensity is eq["15.5.png"] $\frac{dI(\omega)}{d\Omega} \simeq \frac{e^2}{4\pi^2 c} |\Delta\beta|^2 \sin^2\Theta, \quad \omega\tau \ll 1$ Here Θ is the angle between the outgoing radiation and the change of velocity; $\hat{n} \cdot \Delta \vec{\beta}$ = $|\Delta \vec{\beta}| \cos\Theta$. The total intensity (i.e., integrated over directions) is

^{In[1780]≈} eq["15.6.png"]

14 | 1126.brems1.nb

$$I(\omega) \simeq \frac{2}{3\pi} \frac{e^2}{c} |\Delta \beta|^2, \qquad \omega \tau \ll 1$$

independent of ω . For low frequencies the spectrum is a constant, i.e., *independent of frequency*.

For high frequencies ...

... the exponential factor $e^{i\omega t}$ oscillates rapidly compared to the time dependence of β so the integral is small; and thus we can neglect the radiation for $\omega \tau \gg 1$. \star Figure 15.1. shows the frequency spectrum of radiation emitted in a collision of *duration* τ and *velocity change* $\Delta \vec{\beta}$.

1126.brems1.nb | 17

Polarization

Equations 15.1 and 15.5 are summed over polarizations. An interesting question is, what is the intensity for a specified polarization?

Consider the plane P spanned by the initial

velocity $\vec{\beta_1}$ and the direction of outgoing radiation \hat{n} . Suppose $\overrightarrow{\Delta\beta}$ is perpendicular to $\vec{\beta_1}$. Use Figure 15.2 below to define coordinate axes x,y,z.

18 1126.brems1.nb

We may define two orthogonal polarization vectors, $\vec{\epsilon}_{par}$ and $\vec{\epsilon}_{perp}$; these are parallel

and perpendicular to the plane P = the xzplane. $\hat{e}_{perp} \cdot \hat{n} \times (\hat{n} \times \hat{\Delta}) = -\sin\phi$ $\hat{e}_{par} \cdot \hat{n} \times (\hat{n} \times \hat{\Delta}) = \cos\theta \cos\phi$ (* calculations *) nh = {Sin[θ], 0, Cos[θ]}; eperp = {0, 1, 0}; epar = Cross[nh, eperp] // TrigExpand; Delta = {Cos[ϕ], Sin[ϕ], 0}; Dot[eperp, Cross[nh, Cross[nh, Delta]]] // TrigExpand Dot[epar, Cross[nh, Cross[nh, Delta]]] // TrigExpand Dot[nh, Delta] // TrigExpand Print["cos0 = ", %]

1126.brems1.nb | 19

Out[1788]= $-Sin[\phi]$

Out[1789]= $\mathsf{Cos}[\Theta] \; \mathsf{Cos}[\phi]$

 $\mathsf{Out[1790]=}\;\mathsf{Cos}\left[\phi\right]\;\mathsf{Sin}\left[\varTheta\right]$

 $\cos\Theta = \cos[\phi] \operatorname{Sin}[\Theta]$

$$[125 \text{ square and average over } \phi \Rightarrow$$

$$eq["15.9.png"]$$

$$\left[\frac{dI_{II}(\omega)}{d\Omega} = \frac{e^2}{8\pi^2 c} |\Delta\beta|^2 \cos^2 \theta \right]$$

$$\frac{dI_{I}(\omega)}{d\Omega} = \frac{e^2}{8\pi^2 c} |\Delta\beta|^2 \cos^2 \theta \right]$$

$$(125 \text{ square sq$$

15.9

•Eqs. (15.9) "have been verified for X-rays produced by electrons with kinetic energies in the kilovolt range"

The sum of the two polarizations is Eq. 15.5;

 $1 + \cos^2 \theta = 2 - \sin^2 \theta = 2 - 2 \cos^2 \Theta = 2$ $\sin^2 \Theta$