
Bremsstrahlung introduction
Suppose a particle with charge e is moving 
in free space, initially with constant veloc-
ity, v = v e"x .
At time t = 0, it reaches the origin.
But for t > 0 there is a braking force, and 
the particle rapidly decelerates to rest.
Calculate the radiation that is emitted. 
These pictures illustrate what happens.
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▮ For t < 0, the electric field lines are 
shown in blue, in a volume of space cen-
tered at the origin.

In[1771]:= pic["sh1a.png"]

Out[1771]=
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▮ For t = 0, the electric field lines are 
shown in blue, in the same volume.

In[1772]:= pic["sh1b.png"]

Out[1772]=
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▮ For t > 0, the electric field lines are 
shown in blue, in the same volume, if there 
is no braking

In[1773]:= pic["sh1c.png"]

Out[1773]=
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▮ For t ⟶ ∞, the electric field lines are 
shown in red, in the same volume, if the 
braking has occurred.

In[1774]:= pic["sh1d.png"]

Out[1774]=
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▮ For t > 0 , the electric field lines are 
shown in blue and red, in the same volume, a 
short time after the particle comes to 
rest. The information that the particle has 
come to rest travels at the speed of light. 
For the time shown, c t = the radius. For r > 
ct. the information hasn’t yet reached to 
field.

In[1775]:= pic["sh2.png"]

Out[1775]=

The outgoing sphere is the radiation called 
Bremsstrahlung.
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The outgoing sphere is the radiation called 
Bremsstrahlung.
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History of the science of Bremsstrahlung

DISCOVERY
•X-rays [Roentgen, 1895] ; using a “Crookes 
tube”;
•There exists a line spectrum and a contin-
uum; see Wikipedia; Rhodium cathode; K-
lines of Rhodium;

In[1776]:=

•Sommerfeld named the continuous spec-
trum “Bremsstrahlung”; bremsen = to 
brake; strahlung = radiation ;
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•Sommerfeld named the continuous spec-
trum “Bremsstrahlung”; bremsen = to 
brake; strahlung = radiation ;
•Coincidence measurements of electrons 
and photons (Nakel, 1966)

THEORY
◼Classical and semi-classical calculations
•Kramers [1923]
•Wentzel {1923]
◼Quantum mechanical calculations
•Sommerfeld [1931] nonrelativistic elec-
trons and quantum mechanical; QED= the 
theory of the photon!
•Bethe and Heitler [1934] using the Dirac 
equation
•Bethe and Maxion [1954] using coulomb 
waves function for electron scattering
•Tseng and Pratt [1971] complete numerical 
(computer) calculations
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Jackson, Section 15.1:
Radiation Emitted during Collisions
In a collision there is acceleration and there-
fore radiation. We’ll assume that the projec-
tile is much lighter than the target, so we’ll 
treat the collision as a particle moving in a 
fixed potential.
There will be some approximations which 
must be justified.

▮ Recall the classical theory of radiation by 
a nonrelativistic particle
The intensity per unit solid angle and per 
unit frequency interval is

In[1777]:= eq["15.1.png"]

Out[1777]=

15.1

We may approximate
t — n"•r/c ~ t — v t/c ≈ t
because v/c ≪ 1; this is called the “ dipole 
approximation”.
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We may approximate
t — n"•r/c ~ t — v t/c ≈ t
because v/c ≪ 1; this is called the “ dipole 
approximation”.

In[1778]:= eq["15.2.png"]

Out[1778]=

15.2

Now consider the collision process. There is 
a finite collision time τ = a/v where a is the 
characteristic distance over which the 
force is significant. The integral over t is 
over an interval of order τ.
Now we can separate low frequencies ( ω ≪ 
1/τ ) and high frequencies ( ω ≫ 1/τ ).

1126.brems1.nb     13



For low frequencies ...

∫  dt β
◼

 ≈  Δβ


 = β


2 — β


1

= the total change of β


 in the collision;
and so the radiation intensity is

In[1779]:= eq["15.5.png"]

Out[1779]=

15.5

Here Θ is the angle between the outgoing 
radiation and the change of velocity; n"•Δβ


 

= |Δβ


| cosΘ. The total intensity (i.e., inte-
grated over directions) is

In[1780]:= eq["15.6.png"]

Out[1780]=

15.6 

independent of ω.
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independent of ω.
For low frequencies the spectrum is a con-
stant, i.e., independent of frequency.

For high frequencies ...
... the exponential factor e iωt oscillates 
rapidly compared to the time dependence 

of β
◼
 so the integral is small; and thus we 

can neglect the radiation for ωτ ≫ 1.
★ Figure 15.1. shows the frequency spec-
trum of radiation emitted in a collision of 
duration τ and velocity change Δβ


 .
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In[1781]:= eq["fig15.1.png"]

Out[1781]=

A crude but useful approximation is just a 
step function,

In[1782]:= eq["15.7.png"]

Out[1782]=

15.7 
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▮ Polarization
Equations 15.1 and 15.5 are summed over 
polarizations. An interesting question is, 
what is the intensity for a specified 
polarization?

In[1783]:= eq["fig15.2.png"]

Out[1783]=

Consider the plane P spanned by the initial 

velocity β1
→

 and the direction of outgoing 

radiation n". Suppose Δβ is perpendicular to 

β
→

1. Use Figure 15.2 below to define coordi-
nate axes x,y,z. 
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Consider the plane P spanned by the initial 

velocity β1
→

 and the direction of outgoing 

radiation n". Suppose Δβ is perpendicular to 

β
→

1. Use Figure 15.2 below to define coordi-
nate axes x,y,z. 

Out[3]=

We may define two orthogonal polarization 
vectors, ϵ

→
par and ϵ

→
perp ; these are parallel 

and perpendicular to the plane P = the xz-
plane.
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We may define two orthogonal polarization 
vectors, ϵ

→
par and ϵ

→
perp ; these are parallel 

and perpendicular to the plane P = the xz-
plane.
e"perp • n" × ( n" × Δ"  )  = — sinϕ
e"par • n" × ( n" × Δ"  )  = cosθ cosϕ

In[1784]:= (* calculations *)

nh = {Sin[θ], 0, Cos[θ]};

eperp = {0, 1, 0};

epar = Cross[nh, eperp] // TrigExpand;

Delta = {Cos[ϕ], Sin[ϕ], 0};

Dot[eperp, Cross[nh, Cross[nh, Delta]]] //

TrigExpand

Dot[epar, Cross[nh, Cross[nh, Delta]]] // TrigExpand

Dot[nh, Delta] // TrigExpand

Print["cosΘ = " , %]

Out[1788]= -Sin[ϕ]

Out[1789]= Cos[θ] Cos[ϕ]

Out[1790]= Cos[ϕ] Sin[θ]

cosΘ = Cos[ϕ] Sin[θ]
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Square and average over ϕ ⟹
In[1792]:= eq["15.9.png"]

Out[1792]=

15.9 

▪Eqs. (15.9) “have been verified for X-rays 
produced by electrons with kinetic energies 
in the kilovolt range”
▪The sum of the two polarizations is Eq. 
15.5;
1 + cos2 θ = 2 — sin2θ = 2 — 2 cos2 Θ = 2 
sin2Θ .
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