Bremsstrahlung introduction

Suppose a particle with charge e is moving in free space, initially with constant velocity, $\vec{v}=v \hat{e}_{x}$.
At time $t=0$, it reaches the origin.
But for $t>0$ there is a braking force, and the particle rapidly decelerates to rest. Calculate the radiation that is emitted. These pictures illustrate what happens.

- For $t<0$, the electric field lines are shown in blue, in a volume of space centered at the origin.
(nltri)=pic["sh1a.png"]

4 | 1126.brems1.nb

- For $t=0$, the electric field lines are shown in blue, in the same volume.
mi(tre)= pic["sh1b.png"]

- For $t>0$, the electric field lines are shown in blue, in the same volume, if there is no braking
m(10) $\mathrm{pic}[$ "sh1c.png"]

6 | 1126.brems1.nb

- For $\dagger \rightarrow \infty$, the electric field lines are shown in red, in the same volume, if the braking has occurred.
m(17xa)= pic["sh1d.png"]

- For $\dagger>0$, the electric field lines are shown in blue and red, in the same volume, a short time after the particle comes to rest. The information that the particle has come to rest travels at the speed of light. For the time shown, $c t=$ the radius. For r > $c t$. the information hasn't yet reached to field.
m(177)= pic["sh2.png"]

The outgoing sphere is the radiation called Bremsstrahlung.

History of the science of Bremsstrahlung

DISCOVERY

-X-rays [Roentgen, 1895] ; using a "Crookes tube";
-There exists a line spectrum and a continuum; see Wikipedia; Rhodium cathode; Klines of Rhodium;

- Sommerfeld named the continuous spectrum "Bremsstrahlung"; bremsen = to
brake; strahlung = radiation :
-Coincidence measurements of electrons and photons (Nakel, 1966)

THEORY

-Classical and semi-classical calculations

- Kramers [1923]
-Wentzel \{1923]
-Quantum mechanical calculations
- Sommerfeld [1931] nonrelativistic electrons and quantum mechanical; QED= the theory of the photon!
-Bethe and Heitler [1934] using the Dirac equation
-Bethe and Maxion [1954] using coulomb waves function for electron scattering
-Tseng and Pratt [1971] complete numerical (computer) calculations

Jackson, Section 15.1:

Radiation Emitted during Collisions

In a collision there is acceleration and therefore radiation. We'll assume that the projectile is much lighter than the target, so we'll treat the collision as a particle moving in a fixed potential.
There will be some approximations which must be justified.

- Recall the classical theory of radiation by a nonrelativistic particle
The intensity per unit solid angle and per unit frequency interval is
mum eq["15.1.png"]
$\frac{d I(\omega)}{d \Omega}=\frac{e^{2}}{4 \pi^{2} c}\left|\int \mathbf{n} \times(\mathbf{n} \times \dot{\boldsymbol{\beta}}) e^{i \omega\left(t-\frac{\mathbf{n} \cdot \mathbf{r}(t)}{c}\right)} d t\right|^{2}$

We may approximate
$\dagger-\hat{n} \cdot \vec{r} / c \sim \dagger-v \dagger / c \approx \dagger$
because $\mathrm{v} / \mathrm{c} \ll 1$; this is called the " dipole approximation".
wnaze eq["15.2.png"]
$\frac{d I(\omega)}{d \Omega}=\frac{e^{2}}{4 \pi^{2} c}\left|\int \mathbf{n} \times(\mathbf{n} \times \dot{\boldsymbol{\beta}}) e^{i \omega t} d t\right|^{2}$
15.2

Now consider the collision process. There is a finite collision time $\tau=a / v$ where a is the characteristic distance over which the force is significant. The integral over \dagger is over an interval of order τ.
Now we can separate low frequencies ($\omega \ll$ $1 / \tau$) and high frequencies ($\omega \gg 1 / \tau$).

For low frequencies ...
$\int d t \boldsymbol{\beta} \approx \Delta \overrightarrow{\boldsymbol{\beta}}=\vec{\beta}_{2}-\vec{\beta}_{1}$
$=$ the total change of $\vec{\beta}$ in the collision: and so the radiation intensity is
m(179)= eq["15.5.png"]
$\frac{d I(\omega)}{d \Omega} \simeq \frac{e^{2}}{4 \pi^{2} c}|\Delta \beta|^{2} \sin ^{2} \Theta, \quad \omega \tau \ll 1$
15,5
Here Θ is the angle between the outgoing radiation and the change of velocity; $\hat{n} \cdot \Delta \vec{\beta}$ $=|\Delta \vec{\beta}| \cos \Theta$. The total intensity (i.e., integrated over directions) is
mina) eq["15.6.png"]
$-I(\omega) \simeq \frac{2}{3 \pi} \frac{e^{2}}{c}|\Delta \beta|^{2}$,
$\omega \tau \ll 1$
independent of ω.
For low frequencies the spectrum is a constant, i.e., independent of frequency.

For high frequencies ...
... the exponential factor $e^{i \omega t}$ oscillates rapidly compared to the time dependence of β so the integral is small; and thus we can neglect the radiation for $\omega \tau \gg 1$. \star Figure 15.1. shows the frequency spectrum of radiation emitted in a collision of duration τ and velocity change $\Delta \vec{\beta}$.

A crude but useful approximation is just a step function,
miras: eq["15.7.png"]
$I(\omega)= \begin{cases}\frac{2 e^{2}}{3 \pi c}|\Delta \beta|^{2}, & \omega \tau<1 \\ 0, & \omega \tau>1\end{cases}$
15.7

- Polarization

Equations 15.1 and 15.5 are summed over polarizations. An interesting question is, what is the intensity for a specified polarization?
(vyone eq["fig15.2.png"]
\qquad

Consider the plane P spanned by the initial

18 |1226.brems1.nb
velocity $\vec{\beta}_{1}$ and the direction of outgoing radiation \hat{n}. Suppose $\overrightarrow{\Delta \beta}$ is perpendicular to \rightarrow $\vec{\beta}_{1}$. Use Figure 15.2 below to define coordinate axes x, y, z.

We may define two orthogonal polarization vectors, $\vec{\epsilon}_{\text {par }}$ and $\vec{\epsilon}_{\text {perp }}$; these are parallel
and perpendicular to the plane $P=$ the $x z-$ plane.

$$
\begin{aligned}
& \hat{e}_{\text {perp }} \cdot \hat{n} \times(\hat{n} \times \hat{\Delta})=-\sin \phi \\
& \hat{e}_{\text {par }} \cdot \hat{n} \times(\hat{n} \times \hat{\Delta})=\cos \theta \cos \phi
\end{aligned}
$$

(vrat) (* calculations *)
$\mathrm{nh}=\{\operatorname{Sin}[\theta], 0, \operatorname{Cos}[\theta]\} ;$
eperp $=\{0,1,0\}$;
epar = Cross[nh, eperp] // TrigExpand;
Delta $=\{\operatorname{Cos}[\phi], \operatorname{Sin}[\phi], 0\} ;$
Dot[eperp, Cross[nh, Cross[nh, Delta]]] //
TrigExpand
Dot[epar, Cross[nh, Cross[nh, Delta]]] // TrigExpand
Dot [nh, Delta] // TrigExpand
Print["cose = ", \%]
Ourreve - $\operatorname{Sin}[\phi]$
a마방 $\operatorname{Cos}[\theta] \operatorname{Cos}[\phi]$
a antrove $\operatorname{Cos}[\phi] \operatorname{Sin}[\theta]$
$\cos \Theta=\operatorname{Cos}[\phi] \operatorname{Sin}[\theta]$

20 | 1126.brems1.nb
Square and average over $\phi \Longrightarrow$ eq["15.9.png"]

$$
\begin{aligned}
& \frac{d I_{11}(\omega)}{d \Omega}=\frac{e^{2}}{8 \pi^{2} c}|\Delta \beta|^{2} \cos ^{2} \theta \\
& \frac{d I_{1}(\omega)}{d \Omega}=\frac{e^{2}}{8 \pi^{2} c}|\Delta \beta|^{2}
\end{aligned}
$$

- Eqs. (15.9) "have been verified for X-rays produced by electrons with kinetic energies in the kilovolt range"
- The sum of the two polarizations is Eq. 15.5;
$1+\cos ^{2} \theta=2-\sin ^{2} \theta=2-2 \cos ^{2} \theta=2$ $\sin ^{2} \Theta$.

