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Bremsstrahlung introduction
Suppose a particle with charge e is moving
in free space, initially with constant veloc-
ity, V=vé,.
At time t = O, it reaches the origin.

But for 1 > O there is a braking force, and
the particle rapidly decelerates to rest.

Calculate the radiation that is emitted.
These pictures illustrate what happens.

B For t <0, the electric field lines are
shown in blue, in a volume of space cen-
tered at the origin.
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B For 1t = 0, the electric field lines are
shown in blue, in the same volume.
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B For t >0, the electric field lines are
shown in blue, in the same volume, if there
is no braking
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B For t — oo, the electric field lines are
shown in red, in the same volume, if the

braking has occurred.
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B For t>0, the electric field lines are
shown in blue and red, in the same volume, a
short time after the particle comes to
rest. The information that the particle has
come to rest travels at the speed of light.
For the time shown, ¢ t = the radius. For r >

ct. the information hasn't yet reached to
field.
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The outgoing sphere is the radiation called
Bremsstrahlung.
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History of the science of Bremsstrahlung

DISCOVERY
*X-rays [Roentgen, 1895] ; using a "Crookes
tube”;

*There exists a line spectrum and a contin-
uum; see Wikipedia; Rhodium cathode; K-
lines of Rhodium;
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*Sommerfeld named the continuous spec-
trum "Bremsstrahlung”; bremsen = to

brake; strahlung = radiation ;

*Coincidence measurements of electrons
and photons (Nakel, 1966)

THEORY

mClassical and semi-classical calculations
*Kramers [1923]

*Wentzel {1923]

mQuantum mechanical calculations
*Sommerfeld [1931] nonrelativistic elec-
trons and quantum mechanical; QED= the
theory of the photon!

*Bethe and Heitler [1934] using the Dirac
equation

*Bethe and Maxion [1954] using coulomb
waves function for electron scattering
*Tseng and Pratt [1971] complete numerical
(computer) calculations
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Jackson, Section 15.1:
Radiation Emitted during Collisions

In a collision there is acceleration and there-
fore radiation. We'll assume that the projec-
tile is much lighter than the target, so we'll
treat the collision as a particle moving in a
fixed potential.

There will be some approximations which
must be justified.

# Recall the classical theory of radiation by
a nonrelativistic particle

The intensity per unit solid angle and per
unit frequency interval is
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We may approximate
t—Ar/e~t—vit/c=t

because v/c « 1; this is called the " dipole
approximation”.
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Now consider the collision process. There is
a finite collision time 1= a/v where a is the
characteristic distance over which the
force is significant. The integral over 1t is
over an interval of order 1.

Now we can separate low frequencies ( w <<
1/t ) and high frequencies ( w > 1/7).
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For low frequencies ...

n > o >
[ dtB = 88=B.— B
9
= the total change of B in the collision;
and so the radiation infensity is
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Here © is the angle between the outgoing
9
radiation and the change of velocity; A*AS

_)
= |AB| cos®. The total intensity (i.e., inte-
grated over directions) is
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independent of w.

For low frequencies the spectrum is a con-
stant, i.e., independent of frequency.

For high frequencies ...

.. the exponential factor e oscillates
rapidly compared to the time dependence

of B so the integral is small; and thus we
can neglect the radiation for wt > 1.

* Figure 15.1. shows the frequency spec-
trum of radiation emitted in a collision of

9
duration T and velocity change A .
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wor- eq["figl5.1.png"] . .
B Polarization

10)=2| ag|? Equations 15.1 and 15.5 are summed over
/ e | polarizations. An interesting question is,
. —T S what is the intensity for a specified
J W \ | polarization?
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A crude but useful approximation is just a

step function,
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Consider the plane P spanned by the initial
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_)
velocity B; and the direction of outgoing
—
radiation /. Suppose AB is perpendicular to

5
B1. Use Figure 15.2 below to define coordi-
nate axes x.y,z.

z

g1

We may define two orthogonal polarization
- -
vectors, €pqr and €perp ¢ These are parallel
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and perpendicular fo the plane P = the xz-
plane.

é\pe,ﬂp°ﬁx(ﬁxﬁ) = — sing
Epar * A x (A xA) = cos6 cos¢

(» calculations =x)

nh = {Sin[6], 0, Cos[6]};

eperp = {0, 1, 0};

epar = Cross[nh, eperp] // TrigExpand;

Delta = {Cos[¢], Sin[¢], O};

Dot[eperp, Cross[nh, Cross[nh, Delta]]] //
TrigExpand

Dot[epar, Cross[nh, Cross[nh, Delta]]] // TrigExpand
Dot[nh, Delta] // TrigExpand

Print["cose = ", %]

oui78e} —STn[Cb]
o COS[O] COS[]
e COS[@] SiN[O]

cos® = Cos[¢p] SIn[HO]
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Square and average over ¢ =
wez- @ ["15.9.png'"]
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Egs. (15.9) "have been verified for X-rays
produced by electrons with kinetic energies
in the kilovolt range”

* The sum of the two polarizations is Eq.
15.5;

1+cos®6=2—sin"0=2—2cos’° O =2
sin‘o .




