
PHY 842 SUMMARY
The purpose of a course like PHY 842 is to 
learn...

◼ first principles
◼ math methods
◼ examples
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The course had many subjects:
CH9 Electromagnetic waves & optics
+ Frequency dependence of polarization; 
ϵ(ω)

CH11 Radiation by systems; J
→
(x,t) ⟶ dP/dΩ

+ Radiation by charges; r
→
(t) ⟶ E

→
 and B

→
 ⟶ 

dP/dΩ
→ general results
→ Larmor’s formula
→ synchrotron radiation
→ Cherenkov radiation
→ Bremsstrahlung

CH12 Scattering of light
+ Diffraction of light
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FIRST PRINCIPLES FOR EVERYTHING
Microscopic Maxwell’s equations

∇ • E
→
 = 4π ρ     and     ∇ × E

→
 = – ∂B

→

c ∂t

∇ • B
→
 = 0     and     ∇ × B

→
 = 4 π

c
 J
→
 +  ∂E

→

c ∂t
gaussian units
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First Principles for continuous media
Macroscopic Maxwell’s equations

∇ • D
→

 = 4π ρ free     and     ∇ × E
→
 = – ∂B

→

c ∂t

∇ • B
→
 = 0     and     ∇ × H

→
 = 4 π

c
 J
→

free +  ∂D
→

c ∂t
,

BUT what are D
→
 and H

→
 ?

They come from P
"→"

 and M
→
   (how?)

&  that leads to ϵ  and  μ   (how?)
You’ll need to know this for the final exam.
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Optics
Light is normally incident, from air, on the pla-
nar surface of a dielectric medium. What frac-
tion of the energy reflects from the surface?
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The classical electron theory ⟹ ϵ(ω)
How did we do that?
recall...

m x
••
 = – γ x

•
 – m ω0

2 x
→
  – e E

→

0 e– i ω t

Re implied  

P
→
(t) = – e x

→
(t) nb

P
→
 = χe(ω) E

→

0 e–iωt and ϵ = 1 + 4π χe

⟹

ϵ(ω) =  1 + 4 π e2

m
 nb

2

ω0
2 – ω2 – i ω γ

complex and frequency dependent, which 
has interesting consequences.
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Plasma frequency?
For a plasma, ω0 = 0.
vx(t) = x

•
(t) = –eE0

m(γ–iω)
e–iωt

Jx(t) = nc (–e vx(t)) = σ(ω) Ex(t)

∴ σ(ω) = e2

m
 

nc

γ–iω

⟹ general dispersion relation is 
c2 k2 = ω2 μ { ϵ(ω) + 4π i σ(ω)/ω }

exercise 9.5.5  
,

For high frequencies, 

ϵeff(ω) = 1–
ωp

2

ω2
 where ωp= ???
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The general theory of radiation
The general theory applies to radiation, and 
also to scattering of light by microscopic 
particles.
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Lecture of October 26
The classical electron model of light scattering

● An electromagnetic wave impinges upon a 
molecule
The incoming E.M. wave is a plane wave, 
moving in the z direction, and linearly polar-
ized in the x direction,

  E

(x,t) = e

⋀
x E0  e i  k z – ω t
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● Motion of the electron(s)
Using the classical electron model, the 
motion of the negative charge is described by

  m d 2 r

dt2
 = – K r – γ  d r

dt
 – e E0 e

⋀
x e–i ω t

i.e., a damped driven oscillator.
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The steady–state solution: the electron oscil-
lates in the x direction, with the driving fre-
quency ω;

  r(t) = e
⋀

x e –iω t A
where 

  A = 
– e E0

mω0
2 – ω2 – iℽω

  ω0 = K m  = the “natural frequency”.
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● The electron radiates
Larmor’s formula; the average power inte-
grated over all directions is

Pavg = 2 e2 a2

3 c3
 where a2 =   x

••

2
 .

be careful about taking the real part of x(t) 
We have A = A1 + i A2, and so
x(t) = Re { e–iωt A } = A1 cos(ω t) + A2 sin(ω 

t)

  x
•• 2

 .= 1
2
 ω4 ( A1

2 + A2
2 )

Pavg  =  e2

3 c3
 ω4 ( A1

2 + A2
2 )

= e4 E02 ω4

3 c3 γ2 ω2+m2 ω2-ω022
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● Scattering and the cross section
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The definition of the scattering cross section 

is

  σ = P
Sinc

where P = outgoing power averaged over 

time;

and Sinc = incoming intensity

≡ incident power per unit area averaged 

over time

Sinc = c
4 π

 〈 E

 × B


 〉 = c

8 π
 E0

2

Thus,

σ = 
e4 E0

2 ω4

3 c3
 1
m2ω0

2– ω22+γ2 ω2
 8 π
c E0

2
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σ = 8 π
3

re
2 ω4

ω0
2– ω22+ (γω/m)2

re = e2

mc2
 = the “classical radius” of the 

electron
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       ← Rayleigh →
                       ← resonant → 
                                             ← Thomson →
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