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PHY 842 SUMMARY

The purpose of a course like PHY 842 is to
learn...

= first principles

= math methods

= examples

The course had many subjects:
CH9 Electromagnetic waves & optics

+ Frequency dependence of polarization;
e(w)

CH11 Radiation by systems; J(x,t) — dP/dQ

R
+ Radiation by charges; r(t) — E and B —
dP/dQ

- general results

- Larmor’s formula

- synchrotron radiation

- Cherenkov radiation

- Bremsstrahlung

CH12 Scattering of light
+ Diffraction of light




FIRST PRINCIPLES FOR RADIATION
CALCULATIONS

Given p(x ,t) and 7(?(,#) ,
what are the fields2

We could go back to the VERY FIRST first prin:

ciples, i.e., Maxwell’s equations (in free
space). But instead we'll use general things
that we know:

1 potentials ®(x,t) and ;A)(;(,t) ;

n that guarantees the homogeneous

Maxwell equations;

1 then the inhomogeneous Maxwell equa-
tions imply that ® and A obey the wave equa-
tion, with sources p and :;, in the Lorentz (or,
Lorenz) gauge;

a the retarded Green’s function solves the
wave equation.

=> The first principles for radiation
calculations,

oGty = [ L
X — x‘
p<;' | 3| 1o
- ~ 1f d3 |
|.x X|

- -

J(x',t—|x—x" /c)

gaussian units

. q *
retarded time =t - | x - x' | /c




6 | zzz2.nb

Radiation by “systems”

for example, an antenna

One method is to consider harmonic sources
M T2y it

J(x,1) = J(x) e

plx1) = p(x) @'

Ve lr)= iwplr)

/ /;/ and p(;) ane complex,

eventually. lake Ue real pard.
=

A1) = Ax) e-iet
o(x,1) = o(x) et

-

J (

C - '
|.X—X

. % '
- lk|x—x |

x')e

where k = w/c.

A= L[4

N
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Potentials in the far zone ( r — o )

|;)(—x' | =\/r2—2;°x'+(r')2
= {1 =2hex + (' [r2 )2

-
=r - n e+ x'+ higher order terms

—s the multipole expansion
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Dipole Radiation; | x - x' | = r;
This means that the retarded time t,¢ is set
equal to t - r/c, which may be regarded as
an approximation (r - « or source size -

0).
> eikr - -
A(x) = — [ &3x J( x")

Exercise
[ &B3x J(x') = -i w;

where B = [ I’ ;' p(;')

e, plt') = [ &’ x' plx') 7' @t




Fields and radiated power in the dipole
approximation

AR =& (-iwp
x)="— (-1 wp)
B = B(¥) e

B (%) = VxA(%)

eikr N

= —|k—(|k— )(ﬁxp)

k2 & (Axp)

cr
What about E 2

E=Bxpin the far zone,
because the fields approach a plane wave in
any direction in the far zone.

Radiated power in the dipole approximation

S—EExB

but we need to be careful with complex func-
tions!
What we can say is this ...
(£)=r2 < Ref+(ExB*)
8

do

Exercise.

dP\ = __w?* 2012 a2
(dQ) 32 2 ¢? l P I sin”6

> 2

12

power in dipole radiation




Radiation by a particle
The trajectory is given, r(t).
= The charge and current densities are
plxt) = e 8°[x - r(t) ]
A = e (1) 8% - 7(1) ]

= the potentials are

A(xt)——fdt 6[t—t+ R(')/c ]

R(f'
where R(t') = | x—r(f) |

=> the Lienard-Wiechert potentials
o(x ) =e [K]_R]ret where k = 1-fi* v/c

- _erv
A(X 't) B C [KR]
retarded time
t.=1t- R(t,) /c

ret

Calculation of the fields; assigned as a
problem in WT;
details in Jackson; an involved calculation;

E(x,1) = E[{n — i}sfé z_ ﬁz}] l'ﬂ+

el m , |
+ - [ﬁ x {(m —B) x ﬁ}]m
and B(x4) = A x E(x 1)

(everywhere)
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142 Total Power Radiated by an Accelerated Charge—Larmor’s
Formula and Its Relativistic Generalization

If a charge is accelerated but is observed in a reference frame where its
velocity is small compared to that of light, then in that coordinate frame
the acceleration field in (14.14) reduces to

_elnxmx ﬁ)]
E, = . [——-—R - (14.18)
The instantaneous energy flux is given by the Poynting’s vector,

c c

S=—ExB=— .

EX P |E,|"n (14.19)

This means that the power radiated per unit solid angle is*
= SIRES =S mx@x P (14.20)

* In writing angular distributions of radiation we will always exhibit the polariza-
tion explicitly by writing the absolute square of a vector which is proportional to the
electric field.

[Sect. 14.2] Radiation by Moving Charges 469

If @ is the angle between the acceleration v and n, as shown in Fig. 14.3,
then the power radiated can be written

P _ € 2inte (14.21)
dQ  4xc®
This exhibits the characteristic sin? © angular dependence which is a well-
known result. We note from (14.18) that the radiation is polarized in the
plane containing ¥ and n. The total instantancous power radiated is
obtained by integrating (14.21) over all solid angle. Thus

== — 14.22
P 3 s ( )

This is the familiar Larmor result for a nonrclativistic, accelerated charge.
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Fig. 144 Radiation pattern for

charge accelerated in its direction

of motion. The two patterns are

not to scale, the relativistic one

(appropriate for y ~2) having

been reduced by a factor ~10°
for the same acceleration.




