
PHY 842 SUMMARY
The purpose of a course like PHY 842 is to 
learn...

◼ first principles
◼ math methods
◼ examples
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The course had many subjects:
CH9 Electromagnetic waves & optics
+ Frequency dependence of polarization; 
ϵ(ω)

CH11 Radiation by systems; J
→
(x,t) ⟶ dP/dΩ

+ Radiation by charges; r
→
(t) ⟶ E

→
 and B

→
 ⟶ 

dP/dΩ
→ general results
→ Larmor’s formula
→ synchrotron radiation
→ Cherenkov radiation
→ Bremsstrahlung

CH12 Scattering of light
+ Diffraction of light
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FIRST PRINCIPLES FOR RADIATION 
CALCULATIONS

Given  ρ(x
→
 ,t) and J

→
(x
→
,t) ,

what are the fields?
We could go back to the VERY FIRST first prin-
ciples, i.e., Maxwell’s equations (in free 
space). But instead we’ll use general things 
that we know:

▮ potentials Φ(x
→
,t) and A

→
(x
→
,t) ;

▮ that guarantees the homogeneous 
Maxwell equations;
▮ then the inhomogeneous Maxwell equa-
tions imply that Φ and Α

→
 obey the wave equa-

tion, with sources ρ and J
→
, in the Lorentz (or, 

Lorenz) gauge;
▮ the retarded Green’s function solves the 
wave equation.
⟹ The first principles for radiation 
calculations,
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⟹ The first principles for radiation 
calculations,

Φ (x
→

, t ) = ∫  d3 x'
x
→

– x'
→  

           ρ ( x '
→

, t - x
→

– x '
→

/ c )

A
→

 (x
→

, t ) =  1
c  ∫  d3 x'

x
→

– x'
→  

          J
→

 ( x '
→

, t - x
→

– x '
→

/ c )

gaussian units

retarded time = t – | x
→
 – x '

→
 |/c
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Radiation by “systems”
for example, an antenna
One method is to consider harmonic sources

J
→
(x
→
,t) = J

→
(x
→
) e–iωt 

ρ(x
→
,t) = ρ(x

→
) e–iωt 

∇ • J
→

(x
→

) =  i ω ρ(x
→

) 
J
→

(x
→

) and ρ(x
→

) are complex;
eventually, take the real part.

⟹

A
→

(x
→
,t) = A

→
(x
→
) e–iωt 

Φ(x
→
,t) = Φ(x

→
) e–iωt 

ditto 
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A
→

 (x
→

) =  1
c  ∫  d3 x'

x
→

– x '
→  

          J
→

 ( x '
→

) e i k x
→
- x '

→

          
where k = ω/c.
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Potentials in the far zone ( r ⟶ ∞ )

| x
→
 – x '

→
 | = r2 – 2 x

→
• x '

→
+ r '2

  =  r { 1 – 2 n1 • x '
→

 + (r '  r2 }12

  = r – n1 • x '
→

 + higher order terms
  ⟶ the multipole expansion
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Dipole Radiation ; | x
→
 – x '

→
 | ⟶ r ;

This means that the retarded time tret is set 
equal to t – r/c , which may be regarded as 
an approximation (r → ∞ or source size → 
0). 

A
→

(x
→
) = eikr

cr
 ∫  d3x’ J

→
( x '

→
 )

Exercise

∫  d3x’ J
→
(x '
→

) = – i ω p
→

where p
→
 = ∫  d3x’ x '

→
 ρ(x '

→
)

i.e., p
→
(t’) = ∫  d3x’ x '

→
 ρ(x '

→
) e–i ω t'
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Fields and radiated power in the dipole 
approximation

A
→

(x
→
) = eikr

cr
 ( – i ω p

→
 )

B
→
 = B

→
(x
→
) e–iω t 

B
→
 (x

→
) = ∇×A

→
(x
→
) 

=  –ik eikr

cr
 ( ik – 1

r
 ) ( n1 × p

→
 )

≈ k2 eikr

cr
  ( n1 × p

→
 )

What about E
→
 ?

E
→
 ≈ B

→
 × n1 in the far zone,

because the fields approach a plane wave in 
any direction in the far zone.
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Radiated power in the dipole approximation

S
→
 = c

4 π
 E
→
 × B

→
 ,

but we need to be careful with complex func-
tions!
What we can say is this ...

 dP
dΩ

 = r2 c
8 π

 Re n1 • ( E
→
 × B

→
* )

Exercise.

 dP
dΩ

 = ω4

32 π2 c2  | p
→
 2 sin2θ

P = ω4

12 π
 | p

→
 2

power in dipole radiation
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Radiation by a particle

The trajectory is given, r
→
(t).

⟹ The charge and current densities are
ρ(x

→
,t) = e δ3[ x

→
 – r

→
(t) ]

J
→
(x
→
,t) = e r

◼
(t) δ3[ x

→
 – r

→
(t) ]

⟹ the potentials are

A
→

(x
→
,t) = e

c
 ∫  dt’ 

r
◼
(t')

R(t')
 δ [ t’ – t +  R(t’)/c ] 

where R(t’) = | x
→

– r
→
t ' |

⟹ the Lienard-Wiechert potentials
Φ(x

→
 ,t) = e  1

κ R

ret

 where κ = 1–n1• v
→
/c

A
→

(x
→
 ,t) = e

c
 ⋁
κ R


ret

retarded time
tr = t – R(tr) /c
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Calculation of the fields; assigned as a 
problem in WT;
details in Jackson; an involved calculation; 

and B
→
(x
→
,t) = n1 × E

→
(x
→
,t)

(everywhere)
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