Problem 1-answers
Use Gaussian units; the force between charges is $F=q l q 2 / r^{\wedge} 2$.
(a) Fill in the Table below. (Hand in this page with the table filled in.)
(b) Show that the equation $\operatorname{div} \mathbf{E}=4$ pi rho has the correct dimensions.
(c) Show that the equation curl $\mathbf{B}=(4 \mathrm{pi} / \mathrm{c}) \boldsymbol{J}$ has the correct dimensions.

quantity	dimensions (not units)	Gaussian unit (name)	Gaussian unit in base units
length	L	cm	cm
time	T	sec	sec
mass	M	g	g
force	M L T-2	dyne	g cm sec ${ }^{-2}$
energy	$\mathbf{M L 2} \mathbf{T}^{\mathbf{2}}$	erg	$\mathrm{g} \mathbf{c m}^{2} \mathbf{s e c}^{-2}$
electric charge	$\mathbf{M}^{1 / 2} \mathbf{L}^{\mathbf{3 / 2}} \mathbf{T}^{-1}$	Fr	$\mathrm{g}^{1 / 2} \mathrm{~cm}^{3 / 2} \mathrm{sec}^{-1}$
electric field E	$\mathbf{M}^{\mathbf{1 / 2}} \mathbf{L}^{\mathbf{1 / 2}} \mathbf{T}^{\mathbf{- 1}}$	statV/cm	$\mathrm{g}^{1 / 2} \mathrm{~cm}^{-1 / 2} \mathrm{sec}^{-1}$
displace ment field D	$\mathbf{M}^{\mathbf{1 / 2}} \mathbf{L}^{\mathbf{1} / \mathbf{2}} \mathbf{T}^{\mathbf{- 1}}$	$?$	$\mathrm{g}^{1 / 2} \mathrm{~cm}^{-1 / 2} \mathrm{sec}^{-1}$
magnetic field B	$\mathbf{M}^{\mathbf{1 / 2}} \mathbf{L}^{\mathbf{1} / \mathbf{2}} \mathbf{T}^{\mathbf{- 1}}$	G	$\mathrm{g}^{1 / 2} \mathrm{~cm}^{-1 / 2} \mathrm{sec}^{-1}$
magnetic field H	$\mathbf{M}^{\mathbf{1 / 2}} \mathbf{L}^{\mathbf{- 1 / 2}} \mathrm{T}^{\mathbf{- 1}}$	Oe	$\mathrm{g}^{1 / 2} \mathrm{~cm}^{-1 / 2} \mathrm{sec}^{-1}$

(b) div E and rho have the same unite: $\mathbb{M}^{1 / 2} \mathrm{~L}^{-3 / 2} \mathrm{~T}^{-1}$.
(c) curl B and J / c have the same meite : $\mathbb{N}^{1 / 2} \mathrm{~L}^{-3 / 2} \mathrm{~T}^{-1}$.

