2™ Sound Fall 2011

Acoustics of the cylindrical resonator

The sound field generated in a cylindrical resonator of length L and radius a is given by
the wave equation for the pressure p

where c is the speed of sound and t is time. The solutions are of the form
p(r,0,2,t) = O@)R(r)Z(z)e™

where z represents the direction along the cylinder axis, r is the radial direction and 0 is
the azimuthal angle and

@(0) = eim@
R(r) = bl‘]m(krr) +b2Ym (krr)
Z(z) = by sin(kz,) + b, cos(kz,)

Where Ji, and Yy, are Bessel functions of the 1% and 2™ kind, respectively. If the source
field is axisymmetric there will be no 6-dependence and m= 0. If we assume the end
walls of the cavity at z = 0, L and at r =a are rigid, then the axial and radial particle
velocities are zero (nodes). Then at the boundaries we have 0Z/8z=0R/0r=0.
Applying these boundary conditions, we ﬁnd for the axial modes,
o, (kym?) -0,
or
i.e. the nth stationary value of jmn. The term jo, has values 3.84, 7.02, 10. 18, 13.32, ...
forn=1, 2,3, 4,... [Note that these boundary conditions do not apply to a caVity. driven
from the ends since the ends will be at antinodes.]

k; —-q (q 1,2,3,...)and for the radial modes, %, ==, where j, =
a

Since kz2 + k,2 =k’and ¢ = w/k the resonance frequencies (in Hz) are given by
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In the limit L.<<a, one expects to see only plane-wave-like axial modes at low frequencies.
By measuring the resonances for a series of q-values one can accurately determine the
speed of sound c. The mode index q is the number of half-wavelengths that can be fit

into the cavity along the z-axis at resonance.

Using a spreadsheet, calculate the expected resonance frequencies for the experimental
cavity for at room temperature for air, N, and He gases. Identify the frequency of the
lowest Bessel mode. Also calculate the resonant frequenmes for 1* sound in liquid He I at
4.2K and for 2" sound in He [T at 1.8 K.
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Frequency response of a cavity driven near resonance

Now we consider the response of a cavity driven by a periodic field. In analogy with a
one-dimensional harmonic oscillator, it is useful to see how the amplitude and phase of
the system varies in the vicinity of a resonance, e.g., for an axial mode of the cylindrical
cavity. Let z represent the displacement of a microphone. The cavity is driven at the
transmitter by the field

z,(w) = z, Sin wt

whereas the receiver sees the field

z, () = z,A(w)sin(wt - 0) .
This says that the receiver sees a signal with frequency-dependent amplitude that is
shifted in phase by . Near a resonance,

.
®
Alw) =+
(@, -*)? + (ary? ]
where mgis the bare cavity resonance frequency and I" is the damping constant. The

phase shift 8 is frequency dependent, with

-1
tand = 9 = I;w° .
o _o) o -o
0 o,
where we have defined the quality factor O=w,/T . Note that as

@ —> @y,tand —> 0,6 > 7w/2.

The signal at the receiver can be written in the following form:
z () = z,A(w)sin(wt - 5) = zoA(a))[sin @t COSO —CoSwt Sin o ]

The lock-in reads each of the two orthogonal compbnents independently as X and Y. The
actual phase is arbitrary. The best procedure is to find the resonance using R (amplitude)
since it is independent of phase. Then push the AutoSet button to set Y to zero giving the

maximum value for X (=R).
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