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Experiment 1:  Thin Converging Lens  PHY 431 
 

This experiment is a classic exercise in geometric optics. The goal is to measure the 

radius of curvature and focal length of a single converging lens from which you can calculate the 

index of refraction n. We shall explicitly consider the errors that accompany any measurement 

and how errors are analyzed to yield a quantitative estimate of uncertainty. This includes 

quantities derived from measurements, such as the index of refraction here.   

In the procedures for this lab, you are explicitly reminded to estimate the uncertainty 

several times.  (In future labs these reminders will not necessarily be included.)  Please see 

Appendix (i) and (ii) for reference material and relevant equations. The questions, labeled Q1, 

Q2, … should be directly addressed in your write-up in the Analysis & Discussion section.  

 

Procedure: 

A. Choose a converging lens for the experiment.  By definition, the focal length f of a lens is the 

image distance from the lens center, for an infinitely distant object. To obtain a rough 

estimate of f, project an image of some distant object, e.g. table or plant, in the atrium outside 

the lab onto the white paper.  Q1. Why does the object appear upside down? 

B. Use a spherometer to measure the radius of curvature of both surfaces of your lens.  See 

Appendix (i). You begin by finding the “zero” position, x0, using a scratch-free spot on your 

bench (which is a good approximation to a flat surface). Then perform the measurement with 

your lens in place, x1; the distance h is then |x0-x1|.  (Always be sure to include the 

uncertainty. In this case you can repeat the measurements a few times to obtain an estimate 

for the spherometer’s precision, 𝜎𝑥0.)  Consult the manual for the spherometer.  You can use 

the tables there.  Q2. Having estimated measurement uncertainties σx0 and σx1, write an 

expression for h and evaluate it using your data.  

C. Arrange an object (the T on the lamp window) and screen on the optical rail, with a 

separation greater than 4f.  Locate the lens position which gives a sharp image on the screen. 

Record the object and image distances measured from the center of the lens.  (Be sure to 

estimate the uncertainty for these distances.)  Use the thin lens equation to calculate f.  (Also 

calculate f.)  Repeat this for 4 positions of the screen increasing the object-screen separation 

in increments of about 2 cm.  Find your best value for the focal length using the equation by 

the end of Appendix (ii) (the mean).  Q3. How does the best value for f compare to your 

original rough estimate?  

D. Insert a variable iris before/after the lens.  Observe the image as the aperture size is changed.  

Specifically note how the aperture affects your ability to focus the image.   Q4. What is the 

meaning of the term “depth of field” in this context?     

E. Place the light source a distance less than f from the lens. Try to position the screen to bring 

the object into focus.    Q5.  Any difficulties?  What is going on here?  

F. Calculate the index of refraction (including uncertainty) for the glass of your lens using the 

lensmaker’s equation.  (Remember that your write-up should include comments as to 

whether or not your value is reasonable).  
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 Appendix (i): Miscellaneous Equations 

 

Thin Lens Equation:  
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Lensmaker’s Equation: 
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Spherometer Equation: 
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From Pythagoras’ Theorem:  R R h b2 2 2  ( )  
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Appendix (ii): Elements of Error Analysis 

 

Random fluctuations in the measurement process lead to a Gaussian distribution about 

the true value. This distribution gives us a parameter, , called the “standard deviation”.  

(Systematic errors lead to a non-Gaussian distribution.)  Essentially, if many measurements are 

taken, 68% of the data points lie within xx 0 , where 0x  is true value.   

Now, suppose an arbitrary function f(x,y) depends on the variables x and y, assumed to 

be independent of each other. How do we compute the uncertainty in f, f, given y and x?  

Under the assumption that the uncertainties are small compared to the range over which f 

significantly varies, the following expression works:  
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For exemplary specific functions this yields: 
 

2 2 2 2

22

22

( ln )

f x y

f yx

a b

f yx

bx

f

x

bx

f

x

f ax by

a b

f cxy

f x y

f cx y

ba

f x y

f ce

b
f

f ca

b a
f

  

 

 







 

 



  
    

   



  
    

   









 

 

Lastly, we address the situation where we make N measurements of the same quantity x, each 

with an uncertainty ofx.  Intuitively, we expect that combination of a number of measurements 

will yield uncertainty smaller than x.  In fact, if the fluctuations of measurements around the 
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true value are uncorrelated, the estimated uncertainty in the average over measurements is 

reduced by N/1 compared to individual measurements, when N is large:  

 

𝑥̅ =
(𝑥1 + 𝑥2 + ⋯ +𝑥𝑁)

𝑁
 →  𝜎𝑥̅ =

𝜎𝑥

√𝑁
 

 

If 𝜎𝑥 is unknown, it can be estimated from the spread in measurements and formulaically from 

 

𝜎𝑥
2 ≈

𝑥2̅̅ ̅ − 𝑥̅2
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for large N, with the approximation improving as 𝑁 → ∞ 

 


