Try not to make the homework more difficult than it is.

- The written solutions should be complete but concise.
- Do not hand in scratch paper. Do the calculation on scratch paper, but hand in a concise statement of the results.
- If a calculation was done in class, or in Jackson, you are not required to show it in your solution. (If you want to do the calculation yourself to make sure you understand it, that is a good idea! But you don't need to write it up in the solution.)
- For linear algebra, use Mathematica or some other computer software. That should be easier and more accurate than working out the calculation by hand.
For example, Problem 2-3 (Jackson problem 4.8):
$\ln [411]:=$ boundaryconditions $=\{$

$$
\begin{aligned}
& c 0==c 1+c 2 / a^{\wedge} 2 \\
& c 1+c 2 / b^{\wedge} 2=-E 0+c 3 / b^{\wedge} 2 \\
& c 0==K\left(c 1-c 2 / a^{\wedge} 2\right) \\
& \left.K\left(c 1-c 2 / b^{\wedge} 2\right)=-E 0-c 3 / b^{\wedge} 2\right\}
\end{aligned}
$$

Solve[boundaryconditions, $\{c 0, c 1, c 2, c 3\}]$

$$
\begin{aligned}
\text { Out [412] }=\{ & \left\{c 0 \rightarrow-\frac{4 b^{2} E 0 K}{-a^{2}+b^{2}+2 a^{2} K+2 b^{2} K-a^{2} K^{2}+b^{2} K^{2}},\right. \\
c 1 & \rightarrow-\frac{2 b^{2} E 0(1+K)}{-a^{2}+b^{2}+2 a^{2} K+2 b^{2} K-a^{2} K^{2}+b^{2} K^{2}}, c 2 \rightarrow \frac{2 a^{2} b^{2} E 0(-1+K)}{a^{2}-b^{2}-2 a^{2} K-2 b^{2} K+a^{2} K^{2}-b^{2} K^{2}}, \\
c 3 & \left.\left.\rightarrow-\frac{-a^{2} b^{2} E 0+b^{4} E 0+a^{2} b^{2} E 0 K^{2}-b^{4} E 0 K^{2}}{-a^{2}+b^{2}+2 a^{2} K+2 b^{2} K-a^{2} K^{2}+b^{2} K^{2}}\right\}\right\}
\end{aligned}
$$

- For calculus, use Mathematica or some other computer software. That should be easier and more accurate than working out the calculation by hand.
For example, Problem 3-7:

```
ln[414]:= A = Integrate[Power[1-m* Sin[x]^2, -1/2], x]
    answer =(A /. x }->\textrm{Pi}/2)-(\textrm{A}/.\textrm{x}->0
Out[414]=
    EllipticF[x,m]
Out[415]=
    EllipticK[m]
```

- For graphics, learn to use Mathematica or some other computer software.

For example, make a plot of $(2 / \xi)[\mathrm{K}(\xi)-\mathrm{E}(\xi)]-\mathrm{K}(\xi)$
$\ln [428]:=$
 $\{\xi,-5,1.5\}$, PlotRange $\rightarrow\{\{-5,1.5\},\{-1,1\}\}$, ImageSize \rightarrow Small]

