hw 13

13-1. The vector potential of an oscillating electric dipole $\vec{p}(\mathrm{t})=$ $\vec{p} e^{-\mathrm{i} \omega \mathrm{t}}$ is $\vec{A}(\vec{x}) e^{-\mathrm{i} \omega t}$,

$$
\vec{A}(\vec{X})=-\frac{i \mu_{0} \omega}{4 \pi} \vec{p} \frac{e^{i \mathrm{kr}}}{r}
$$

in spherical coordinates (ρ, θ, ϕ).
(A) Derive (9.19) - the magnetic radiation field
(B) Derive (9.19) - the electric radiation field
(C) Derive (9.23) - the differential power (with respect to solid angle) of radiation.
13-2. Jackson Problem 9.16.
Compare the result of (b) to the example of the short center fed linear antenna (Figure 9.1).

期ameanark Axsignment 13 - 猚art 2
13-3. Derive Equation (8.92) from the fields of TE and TM modes of oscillation of a cylindrical resonant cavity.

13-4. In one paragraph, what is Mie scattering? Your answer should be complete but concise.

